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ABSTRACT

This is the analytical part of an analytical and
experimental study of the feasibility ultimately of measur-
ing the static temperature of flowing nitrogen in a hyper-
sonic wind tunnel by means of spark spectroscopy. The
intention is to deduce the effective retational temperature
of the spark, and hence the static temperature, from the
relative line intensities within an emission band. The
spark would be struck perpendicular to the flow in the
tunnel test section.

The experiments, from a non~-flow study by J. B. Kyser
(NASA CR-760, May 1967), used the N2 second-positive band
system. The measured temperatures were higher than ambient.
Because of this discrepancy, a method for caléulating the
ambient temperature as a function of the measured rotational
temperature 1s required. This method must relate the rela-
tive line intensities to the quantities characteristic of
the ambient gas (temperature and pressure) and the spark
(voltage, current, etc.). The objective of the present
research 1s the development of such a method:

For the conditions of Kyser's tests, order-of-magnitude
calculations and referenced experiments show the following
simplified model to be valid:

Population of the excited electronic state occurs
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entirely by direct electron-impact excitation from the
ground electronic state. The ground-electronic-state
molecules remain at ambient conditions during the spark
duration; collisions with slow electrons have a negligible
effect on the translational and rotational temperatures and
on the distribution of rotational states. The molecules
undergo no colllsions between the time at which they are
excited and the time at which they radiate.

There are then three steps as follows in developing
the relative line intensities:

1) Calculation of the rotational excitation accompany-
ing the electronic excitation produced by electron impact -
For thils purpose we devise a "quantized-classical" analysis,
in which we use the classical impact parameter but exploit
the quantum nature of the rotational levels.

2) Calculation of the resulting populations of the
rotational levels in the excited electronic state on the
basis of statistics of these collisions ~ We extend the
standard derivation for the collision frequency of point
molecules to the case of point masses (electrons) colliding
with rigid dumbbells (molecules). The resulting formula
for the excitation rate to a given rotational level contains
a complicated integral, which we evaluate by a Monte-Carlo
methed.

3) Derivation of a formula for the relative line

iv



intensities as a function of the populations of the upper-
state rotational levels (and thence of the measured temper-
ature) - We improve the derivation of Kyser, who integrated
over an assumed continuous distribution of intensity versus
wavelength, by summihg over the individual spectral lines.
For an intensity ratio of 0.274, the present formula gives
a temperature 13OK lower than Kyser's formula.

The predictions of our analysis are compared with the
measurements from Kyser's no-flow tests. In those tests
the ambient temperature was 2950K, the pressure 1 mm Hg,
and the spark energy 0.5 joule. Our prediction disagrees
with Kyser's measurement. We deduce a temperature 29°K
below ambient, whereas the measured temperature was M?OK
above ambient. The cause of the predicted temperature
decrease is that few of the electron-molecule\collisions
causing electronic excitation change the rotatiocnal quantum
number. The predicted temperature, as a result, equals the
ambient temperature times the ratio of the B-values of the
two electronic states. We can demonstrate that, with the
exception of the assumption that the classical impact
parameter is a valld concept for analyzing the electron-
molecule collisions, the assumptions in the analysis either
are undoubtedly valid or affect the predictions very little.
We therefore conclude that the use of classical mechanics

is the cause of the disagreement between theory and



experiment. Unfortunately, the current state of knowledge
in collision theory precludes a full gquantum-mechanical

analysis.
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‘NOMENCLATURE

(If a section or chapter number is listed after a symbol,

the notation is used only there.)

BV rotational constant (Chapter 6)

bO impact parameter (Section 4.3.2)

CosCyy constants defined by Equations (4.3-11)

B distance betWeen the electron and the center of
mass of the molecule

Ee electronic energy of molecule (Section 3.3)

E, rotational energy (Section 3.3)

E, vibrational energy (Section 3.3)

e chemical symbol for a free electron

F excitation function

f velocity distribution function (Section 4.3)

G(go) defined by Equation (5.2-8)

E relative veloclty

h Planck's constant (6.625 x 10~27 erg-sec)

! h/2m  (1.054 x 10"27 erg-sec)
" hv chemical symbol for a photon

I molecular moment of inertia; also, line intensity
Iy K. phase-space integral, defined by Equation (5.2-5)

5>

J resultant molecular angular momentum (Section 2.6)
J rotational gquantum number corresponding to J
R ;
X

total molecular angular momentum apart from spin
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K rotational quantum number corresponding to K

k Boltzmann's constant (1.38054 x 10_16 erg/°K)

m mass of an electron (9.108 x 10_28 gm)

ﬁ angular momentum of nuclear rotation (Section 2.6)
N

number density; also, quantum number corresponding

>
to N (Section 2.6)

P(¢. ) defined by Equations (5.2-9)

20
p(KO) number of collisions with a given value of KO in
which no integer value of K; 1s possible (Chapter 5)
Q relative instrument rcsponse (Section 6.2.5)

q(KO,Kl) number of times each value of Kl occurs, with a

given value of KO (Chapter 5)

r intensity ratio

rem,Kl rate at which molecules un@ergo radigtive transi-
tions from the Kl rotational level (Section 4.,2)

rex,Kl rate at which molecules are exclted to the Kl
rotational level (Chapter 4)

ry half the internuclear distance in N2(Xlzg+), i.e.,
the radius of a nitrogen molecule (0.547 x 10_8 cm)

g angular momentum due to electron spin (Section 2.6)

S line strength; also, quantum number corresponding
to § (Section 2.6)

s(KO) number of collisions computed with a given value
of K, (Chapter 5)

T temperature
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T0 ambient temperature

Tl rotational temperature of portion of gas affected
by spark

t time

v molecular translational velocity

v electron velocity

v electron speed; also, vibrational quantum number
(Chapter 6)

-5

W center-of-mass velocilty

W width of molecule (Section 4.3)

a defined by Equation (4.3-1)

KO,Kl

B(gO,DO) defined in Section 4.3.1
Y angle between 50 and the internuclear axis (see

Figure U4-2)

AC ) change in ( ) during the time interval At (Chapter
2)

At defined by Equation (2.2-2)

§ angle between the internuclear axis and an

arbitrary line in the plane perpendicular to KO
(Section 4.3)

£ mean electron energy (Chapter 2)
) polar angle (see Figure 3-1)
it orbital angular momentum of the molecular electrons

(Section 2.6)

A quantum number corre%ponding to_K (Section 2.6)
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fraction of the electron's energy that is
transferred to the molecule in a collision (Chapter

2); also, wavelength (Chapter 6)

u reduced mass

v wave number (Chapter 6)

v(gO,DD) defined in Section 4.3.1

o population-alternation factor; also, collision
cross section (Chapter 2)

TKO,Kl volume in phase space

) polar angle (see Figure 3-1)

Y angle between EO and W (Section 4.3)

Q solid angle (Section 4.3)

Subscripts:

( )e electron

( )eM electron-fiolecule collision

( )g refe?s to direction of g

( )J rotational level J of a given electronic and
vibrational state

( )K rotational level K of a given electronic and
vibrational state

C )y molecule

( )max maximum

( )min minimum

(. rotational
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)t translational

) vibrational level v

)W refers to directton of W

( )y’ ( )Z component in x, y, z direction,

respectively (see Figure 3-1)

( )O before the electron-molecule collision that causes
the C3I[u - X12g+ eéleétronic excitation, i.e., re-
fers to the incoming electron and the X12g+ mole-~
cule

( )1 after the electron-molecule collision that causes

the C3Hu + X12g+ electronic excitation, i.e., re-

fers to the outgoing electron and the C3Hu molecule.

Superscripts:
() o3 state
() B3Hg state

Electronic States of N

o°

B3Hg lower state of the second-positive band system
C3Hu upper state of the second-positive band system
X12g+ ground state
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CHAPTER 1
INTRODUCTION

1.1 Objective of the Present Research

The present research, on the feasibility of deducing
the static temperature of flowing nitrogen in a hypersonic
wind tunnel by means of spark spectroscopy, is suggested by
a study carried out by Kyser (1966) on the structure of
spark columns for velocity measurement in a hypersonic
stream. Kyser performed experiments which indicated that
the spark disturbs the gas in such a way that the measured
temperature is higher than the ambient temperature. Because
of this discrepancy, a theoretical method for calculating
the ambient temperature as a function of the measured tem-
perature is required for the spark technique to be a relia-
ble means of deducing static temperature. No such method
was available to Kyser. The objective of the present re-

search is the development of such a method.

1.2 XKyser's Tracer-Spark Experiments

Kyser (1964) developed a tracer-spark technique for
measuring the gas velocity in a hypersonic wind tunnel that
uses nitrogen as the working fluid. Later Kyser (1966)
suggested the feasibility of using the tracer spark to

measure static temperature. In the test section of a



hypersonic wind tunnel, the rotational and translational
temperatures are for all practical purposes equal to each
other. Hence, a measurement of the undisturbed rotational
temperature would yield the static (i.e., translational)
temperature. The rotational temperature can be deduced from
band spectra emitted by the nitrogen. In the test section,
however, the nitrogen is too cold (about SOOK) to radiate
spontaneously. Kyser's ldea was to deduce the rotational
temperature from the emission excited by the spark.

In some exploratory experiments whose maln purpose
was to understand the structure of the spark column, Kyser
applied this technique to the simplest possible situation -
nonflowing nitrogen of known temperature and pressure. The
ambient temperature in all the experiments was 2950K. The
pressure vafied between 0.1 mm Hg and 10 mm Hg and the spark
energy between 0.05 joule and 5 joules, the most extensive
group of tests being conducted at 1 mm Hg and 0.5 joule.
These are the only pertinent experiments that have been
performed. The result of Kyser's expériments was that the
spectroscopipally deduced rotational temperature was higher
than the known amblent temperature. For the tests at 1 mm
Hg and 0.5 joule, the spectroscopically deduced temperature
was 355°K, which was 60°K higher than the ambient temperature.

To understand the cause of thils difference, we must
consider how the rotational température is deduced. We

discuss this in the following sections.



1.3 Spectroscopic Measurement of Rotational Temperature

The technique for deducing rotational temperature from
band spectra, which is based on the microscopic definition
of temperature, is well known (Herzberg 1950). If the gas
is in rotational equilibrium at a temperature Tr’ the
number of molecules NJ in the rotational level J of a given
electronic and vibrational state is given by the Boltzmann

distribution

Ny = Fl(J) exp[—Fz(J)/Tr], (1.3-1)

where Fl and F2 are functions of the rotational quantum
number J as will be specified later. The rotational tem-
perature Tr is thus intimately related to the equilibrium
distribution of the populations of the rotational levels.
The intensity IJ of a spectral line caused by a tran-
sitlon from a rotational level J is proportional to the
population NJ and the transitlon probability. Hence; the

line intensities at equilibrium are given by
Iy = F3(J) exp[—FZ(J)/Tr], (1.3=2)

where F3 is a function that will be specified later. By

plotting the measured line intensities in a given band in
the form ln[IJ/F3(J)] versus F2(J), we obtain a straight
line of slope (-l/Tr). Thus we can find the rotational

temperature of the emitting molecules from the slope of the



straight line.* This is known as the "log-slope method."

1.4 Cause of the Change in Rotational Temperature

The source of the discrepancy between the deduced and
ambient temperatures is that the emission must be excited
artificially. We must disturb the gas in order to measure
its rotational temperature, and it is the disturbed gas
whose properties we measure.

At the ambient temperatures of interest, almost all
the N2 molecules are in the ground vibrational level of the
ground electronic. state X12g+. The static temperature that
we wish to deduce is the translational temperature of these
X12g+ molecules, which, as we said above, is for all prac-
tical purposes equal to the rotational temperature of the
X12g+ molecules.

One can use any of the many spectral bands excited by
the spark to measure the rotational temperature of the
spark. Kyser used the (0,2) band of the second-positive
band system, which is in the blue edge of the visible spec-

trum. Although the (0,0) and (0,1) bands are probably more

prominent than the (0,2) band, they lie too far toward the

¥

For light to be emitted spontaneously, the molecules must
be in an excited electronic state. The temperature computed
from the slope of the line is what we mean by the tempera-

ture of the excited state.



violet for ease in instrumentation. The second~-positive

band system arises from spontaneous transitions from the

excited electronic state C3

3

Hu to the excited electronic
state BN . Excitation from the x'z " state to the ¢

state results from impact between an N2 molecule and a high-
speed electron in the spark. Thus, the excitation-emission

process is as follows:
. 1. + 3
Excitation: N2(X T )+ e > N2(C o) + e. (1.4-12)
g u
. 3 3 -
Emission: (NZ(C Hu) > N2(B Hg) + hv. (1.4-1b)

In Equation (1.4-1a), the kinetic energy of the outgoing
electron is lower than that of the incoming electron by the
amount of the excitation energy of the C3Hu electronic
state. We illustrate the process in Figure 1-1 and show a
schematic energy-level diagram in Figure 1-2; The many
vibrational and rotational levels that occur within each
electronlic level have been omitted from this diagram. A
more complete energy-level diagram is shown in Flgure 6-1.
We would like to find the rotational temperature of

1, +

the X molecules. The emission spectrum, however, is

characteristic of the populations of the C3Hu rotational

states. The distributions of the X12g+ and C3IIu rotatibnal

levels may differ, because rotational excitation can accom-

pany the electronic excitation.
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Band System of N2
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Figure 1-2: Schematic Energy-Level Diagram
of the Excitation-Emission Process



1.5 Qutline of the Present Research

The relative intensities of the lines in the (0,2)
band of the second-positive band system are what Kyser
actually measured in hils tests. Our specific objective
therefore is to develop a method for predicting these rela-
tive line intensitles as functions of the quantities that
characterize the ambient gas (temperature and pressure) and
the spark (voltage, current, etc.).

We begin by ascertaining which of the complicated,
transient phenomena that occur in a spark can be neglected
for our purpose. This will enable simplifications to be
made in the analysis.’ In Chapter 2, we discuss this prelim-
inary work. There are then three steps 1In developlng the
relative line intensities. These are discussed in Chapters
3 through 6. In Chapter 3 a method is developed for calcu-
lating the rotational excitation that accompanies the elec-
tronic excitation C3Hu “ X12g+ produced by electron impact.
In Chapters 4 and 5 the statistlcs of these collisions are
used to calculate the resulting populations of the C3Hu
rotational levels. In Chapter 6 a formula is obtained for
the relative line intensities as a function of the popula-
tions of the C3IIu rotational levels. This last step was
necessary because Kyser used a variation of the log-slope

method in his experiments and modified Equation (1.3-2) for

his case. The present investigation indicates the need for



modifying Kyser's derivation.

In Chapter 7, the predicted relative line intensifties
resulting from the present analysis are compared with those
measured by Kyser. For this purpose all the numerical
computations are based on Kyser's tests at 1 mm Hg and 0.5
joule (Section 1.2). Kyser's experiments are in faét the

only ones avallable for comparison with the theory.

1.6 Differences between the Tracer-Spark Method and Muntz's

Electron--Beam Method

Muntz (1962) has also studied the spectroscopic meas-
urement of rotational temperature, exciting the emission
with an electron beam, rather than a spark. (For a survey
of more recent work on Muntz's method, see Marrone 1967.)
Such a beam has much lower current than the spark, and the
light output is correspondingly lower. As a result, milli-
seconds are required for a readily measurable amount of
light to be emitted from the gas. With the spark, on the
other hand, temperature measurements could be made in less
than a microsecond. Furthermore, the spark equipment 1is
cheaper and easier to set up than the beam equipment.
Another advantage of the spark is that the flow velocity
and static temperature could be measured with the same
equipment.

The electrons in Muntz's beam had energies of the order

of 50,000 eV, compared with 18 eV for those in Kyser's



spark. The excitation energy of the upper excited state is
of the order of 10 eV. The electrons in the beam thus lost
only a small fraction of their energy in the electronic-
excitation collisions, so that Munti could use the Born
approximation of quantum mechanics in analyzing the colli-
sions. 1In fact, at these energies the electrons act like
photons in interacting with the molecules. Hence, Muntz
used the standard formulas (Herzberg 1950) for molecular
transitions caused by absorption of light to calculate the
populations of the rotational levels in the upper excited
state. The electrons in Kyser's spark, on the other hand,
have energies of the same order as the excitation energy of
the C3Hu state, so that the Born approximation is not wvalid.
In summary, the tracer spark would have practical

advantages over the electron beam. The tracer-spark tech-
nigque for deducing static temperature is therefore worth
developing. On the other hand, the tracer-spark excitation
process is considerably more difficult to analyze than the

electron-beam process.



CHAPTER 2

SIMPLIFICATION OF THE ANALYTICAL MODEL

2.1 Simplified Analytical Model

Although the collisional phenomena in the spark are
inherently complicated, we can make several useful simpli-
fications. Some of these can be made because of the nature
of the spectroscopic method for deducing rotational tempera-
ture; others can be made because of the low nitrogen pres-
sure and the short duration of the spark used by Kyser.

First, by the basic nature of the technique the rota-
fional temperature depends only on the relative, not the
absolute, line intensities. Hence, we need not know the
absolute excitation cross section for each rotational
transition, but only the relative cross sections, In other
words, we do not have to answer the question, "What is the
probability that excitation will occur to the ground vibra-
tional level of C3nu with a given rotational excitation?".
Rather, we have only to answer the much simpler question,

"If excitation to the ground vibrational level of c3

Ty
occurs, what is the probable accompanying rotational exclta-
tion?". To answer the latter question, we must examine the

collision statistics. This requires knowledge of the

10



excitation function, i.e., the relative variation of the
excitation cross sectlon with electron energy. Again, this
is easier to obtain (Section 3.2) than the absolute cross
section.

Second, certain phenomena that one might expect in a
spark did not have time to occur in Kyser's tests, because
of the low pressure and short duration of the spark. (The
spark parameters.are listed in Section 2.2.) In particular,
no process other than direct exciftation by electron lmpact
(Equation 1l.4-la) was significant in populating the CBHu
state. In Section 2.3, we shall discuss the experimental
results and order-of-magnitude calculations that lead to
this conclusion. Furthermore, the translational and rota-
tional distributions of the xtz * molecules are not signi-
ficantly disturbed from the ambient conditions during the
time interval of interest. This statement will be Justified
in Section 2.4. PFinally, the molecules can be assumed to
undergo no collisions between the time at which they are
excited to the C3Hu state and the time at which they radi-
ate. This is substantiated in Section 2.5. Another sim-
plification is possible because of the low ambient tempera-
ture - that is, nearly all the molecules are in the ground
vibrational level of xlzg+ prior to excitation.

Our simplified model of the spark process is thus as

follows. The ground vibrational level of CBHu is populated

11



solely by direct excitation caused by impact of electrons
with ambient molecules in the ground vibrational level of
XlZ +. The resulting C3Hu molecules then radiate before
they collide with other particles in the spark. The radia-
tion is thus characteristic of the excitation, which in
turn is characteristic of the ambient conditions (tempera-

ture and pressure) and the spark parameters (voltage,

current, etc.)

2.2 Order of Magnitude of the Spark Parameters

The following data were obtained by Kyser (1966), some
by measurement 1in a no-flow chamber and others through com-
putation by a semi-empirical method.

The total spark duration T was

T = 0.8 usec. (2.2-1)
Within the first 0.2 psec of the spark duration, the spark
had begun to emit a measurable amount of light. Kyser made
the temperature measurements at this earliest possible time,
because the gas was then disturbed the least by the spark.

We are therefore interested in what occurs in the initial

time interval
At = 0.2 usec. (2.2-2)

The electron and molecule parameters were as follows:

12



Mean electron energy € =7 eV, (2.2=-3)

Mean electron speed v _ = 108 cm/sec

o , (2.2-4)
~ 12 -3

Electron density Ne = 10 cm , (2.2-5)
1l -3

Molecule density NM-10 cm . (2.2-6)

After the spark was initiated, these quantifies attained
nearly the values listed above within a time small compared
with At. They remained constant to within an order of

magnitude during the rest of the interval At.

3

2.3 Processes for Populating the C Hu State

Various investigators have suggested that processes
other than direct excitation by electron impact (Equation
1.4-1a) may contribute to the population of the C3Hu state
and thus to the second-positive emission. Bates (1949)
suggested electronic recombination with the ground-state

N2+ ion as indicated by

N2+(X22g+) +e >N, (c3nu ) + hv. (2.3-1)

To estimate the relative importance of this process, we make
the following order-of-magnitude calculation. Using a cross

17 cm2 for direct excitation (which 1is the

section op of 10™
order of magnitude measured by Jobe, Sharpton, and St. John
1967, and Stewart and Gabathuler 1958 for electron energies

between 10 and 25 eV), we find that

13



Rate of direct electron-impact

excitation to c3nu = o v, Ny N

D e M (2.3-2)

= (10717 cn?) (108 %%b)(1016 em™3) (1012 cm™3)

= 1019 excitations per sec per cm3

From Kyser (1966), Equation 19, we obtain
Recombination rate = 0.9 x 107/ Ne?‘/al/2
=~ (0.9 x 10_7)(1012 cm_3)%(7 eV)l/2 (2.3-3)

~

3 X 1016 recombinations per sec per cm3

Since the direct-excitation rate is 300 times larger than
the recombination rate, the process (2.3-~1) makes a negli-
gible contribution to the population of C3Hu.

Tyte (1962), who performed experiments with a pure-
nitrogen discharge tube at 0.2 mm Hg, considered electronic

excltation of the metastable A3Z state according to
, 39ty 4 3 3
N, (AL ") + e +» N, (C7I) + e. (2.3-3)

Tyte's data showed no evidence that this was an important

population process in his discharge, which has similarities
to Kyser's spark.

Bauer and Bartky (1965), who calculated the direct-

excitation cross section, suggested the cascade process

+ +

1 X 3
Ny (62" 4 e o Wy (BY) 4 e
(2.3-4)
+ .
NQ(EBZg ) > N2(C3Hu; + hy
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The transition N2(E) +N2(C), however, has never been
observed. Furthermore, the magnitude of Bauer and Bartky's
predicted cross sections agrees better with Stewart and
Gabathuler's (1958) experimental data when only the direct
excitation is considered than when the cascade process is
included.

There is also experimental evidence that the process
given in Equation (1l.4-la) makes the only significant con-
tribution to populating the C3IIu state. An apparatus sim-
ilar to Kyser's spark was studied by Leonard (1965), who
observed laser action in the second-positive band system of
N2 during a fast-rising, high-current, high-voltage dis-
charge. With pressures ranging from 1 mm Hg to several tens
of mm Hg, Leonard produced laser pulses of 0.02 usec dura-
tion. Gerry (1965) devised a corresponding theory based on
direct electron-impact excitation as the only excitation
mechanism of C3Hﬁ. Gerry's predicted laser-power density
as a function of time agrees well both qualitatively and

quantitatively with Leonard's data.*

¥
Gerry's theory predicts only the rate of electronic exci-

tation to C3Hh, not the relative rates of excitation to the
various rotational levels, and thus is not applicable to

the calculation of the relative line intensities.
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Further evidence in this regard was obtained in Tyte's

(1962) experiments. Tyte concluded that the direct-
excitation process (Equation 1l.4-la) accounted for at least
90% of his measured intensity, with the other 10% coming
from the recombination process (Equation 2.3-1). As indi-
cated above, the recombination contribution to the CSHu
population was negligible in Kyser's trécer spark.

Several experimenters who excited the second-positive
band system with electron beams 1in pure nitrogen also have
concluded that the only siguificant population process 1s
direct excitation. These include Langstroth (1934), Stewart
and Gabathuler (1958), Kishko and Kuchinka (1959), and Jobe,
Sharptorn, and S8t. John (1967). These experiments, however,
were conducted at pressures less than 0.1 mm Hg; the Iimpor-
tance of secondary processes grows as the pressure lincreases.

We conclude that the direct-excitation process (1.4-1la)
is the only significant process for populating the C3Hu
state. Although the supporting experiments are not identical
to Kyser's, we feel that they are close enough to justify

this conclusion.

2.4 Effects of Collisions Between Molecules and Slow

Electrons

2.4.1 Increase of Translational Temperature

The increase ATt in translational temperature caused

by elastic electron-molecule collisions during the interval

16



At is given by

3
5 k AT

(mean translational energy transferred to
t

each molecule by collisions during At)

(mean number of collisions per molecule
during At)

X (mean translational energy transferred per
collision), (2.4-1)

16

where k is Boltzmann's constant (1.38054 x 107° erg/°K).

The mean number of collisions per molecule 1s given by
Ve Ne OaM At, (2.4-2)

where OaM is the cross section for elastic electron-molecule
collisions.
The mean translational energy transferred per collision is
given by

€ Aes (2.4-3)
where the mean electron energy € is given in Equation
(2.2-3) and Kt is the mean fraction of the electron's
energy that is transferred to molecular translational

energy in a collision. Substituting Equations (2.4-2) and

(2.4-3) into Equation (2.4-1), we obtain

k ATt = Vg Ne OoM At € At. (2.4-4)

rofw

Since OeM is roughly the area of a circle whose

o]
diameter is the internuclear distance, which is 1.094 A

17



for N2(X12 +), we take

-16 2

Ty = 10 cm”. (2.4-5)

To make the calculation conservative, we use the maximum
possible value of At. From the laws of conservation of
energy and momentum in a collision this is

Ay = m/M = 0.39x10—u, (2.4-6)
where m is the mass of an electron and M is the mass of a
nitrogen atom.
The numerical value of ATt is

AT, = 1073 %g, (2.4-7)
which is negligible compared with the ambient temperature
of 295 °k.
We conclude that the translational temperature of the
NZ(XlZg+) molecules remains practically constént and equal

fo the ambient temperature during the interval At.

2.4.2 1Increase of Rotational Temperature

The increase ATr in rotational temperature caused by
electron-molecule collisions during the interval At is
similarly given by

k =
ATr v Ne o

. Mt € A, (2.4.8)

r
where Ur is the cross section for rotational excitation by
means of eleclron impact and kr is the mean fraction of the

electron's energy that is transferred to rotational energy

in a collision.
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The value of Ar, which is deduced from experimental
data (Kyser 1966), is

A, 2.72 % 10“” . (2.4-9)"

Oksyuk (1966) has made the only calculation of o, that is
valid for electron energies of the order of 7 e€V. The other
available analyses, e.g., Gerjuoy and Stein (1955), Sampson
and Mjolsness (1965), and Takayanagi and Geltman (1965),

are valid only for electrons of much lower energy (about

0.5 eV). Oksyuk's predicted total cross sections (elastic

+ inelastic) agree with the measured values. At 7 eV his

predlcted value of O is

16

o, 2 x 107 em® (2.4-10)

The wvalue of ATr is

AT, = 1072 °x (2.4-11)

which is again negligible compared with the ambient tempera-
1. +

z

z )
molecules also remalns practically constant and equal to

ture. Hence, the rotational temperature of the N2(X

the amblent temperature during the interval At.

2.4.3 Change in the Distribution of Rotational States

Experiments on electrons drifting through nitrogen,
which led to the value of Ar’ indlcate that the actual mean
energy loss per colllsion 1s an order éf magnitude higher
than the value for purely elastic collisions. Since this

1s observed even for electron energies well below the
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vibrational threshold, the result must be caused by
rotational excitation. It follows that upward rotational
transitions occur more often than downward ones. Indeed,
Oksyuk's (1966) analysis predicts that

2JB+1
JA+ JB 2JA+1 59

(2.4-12)

where GJ +J is the cross section for the electron-impact
A "B
excltation from the rotational state JA to the rotational

state JB without vibrational or electronic excitation

occurring. Hence,

if g, > J (2.4-13)
As a result of this imbalance between upward and downward

rotational transitions, the distribution of the rotational
ly +

states of the X molecules may be changed from a Boltzmann
distribution. (This is distinet from the change in rota-

tional temperature analyzed in the preceding section.)

We now estimate the order of magnitude of the change
that occurs during the interval At. According to Oksyuk's
theory, rotational transitions can occur only if J changes
by an even number: 0, + 2, + 4, ... . The cross section
is negligible for ]JB—JA] > 4, Hence, for a given J, the

fractional change ANJ/NJ during the interval At is given by
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AN /N

N

+ N

Ve N AT [NJ—Z OF-2+J

J+2  9342+g

+ 0 + N

Ny (O5ag42 gog-2) * Ny_y 95 g

Nyt O34y = Ny (05agey * °J+J-4)] /Ny -

(2.4-14)
The third term in Equation (2.4-14) is

(AN3/N5) third term = = Ve Ne 2% (9gagin * 95u5.0)-
(2.4-15)
We point out that NJ appears in both the numerator and
denominator of this equation and thus cancels. Using Equa-
tion (2.4-10) for the order of magnitude of the cross sec-
tion, we obtain

(AN /N ~- 8 x 1073, (2.4-16)

J)third term

None of the other terms in Equation (2.4-14) is of a larger

order of magnitude than the third term. Hence we have

ANy << N, (2.4-17)

that is, the Xlzg+ molecules remalin effectively in rota-

tional equilibrium during the interval At.
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2.5 Lifetime of the C3Hu State Compared with the Time

3

Between‘Collisions of the C Hu Molecules

If the radiative lifetime Tr (i.e., the inverse of the
radiative transition probability) of the C3Hu state 1s much
less than the mean time TC between collisions, we can assume
that the 0311u molecules will radiate before they collide with

another particle. From Kyser (1966), we obtain

TR = 0.045 usec

. (2.5-1)

Tg = 0.140 usec

The value of TR is the inverse of the sum of the transition
probabilities of all transitions from the zeroth vibrational
level of C3Hu. The value of Ta is the inverse of the mole-
cular collisibn rate at a temperature of 2950K and a pres-
sure of 1.0 mm Hg. KXyser does not mention the uncertainties
on either of‘these values, both of which come from experi-

ments referenced by him. Hence we obtain

Although this number (3) is a bit borderline to justify the
stated assumption, we have used this assumption in our

analysis.
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2.6 Labelling of the Rotational Levels

The resultant molecular angular momentum K (disregard-
ing nuclear spin) 1s the vector sum of the contributions
from nuclear rotation, electronic orbiting about the nuclei,
and electron spin (Herzberg 1950). These contributions add
in different ways, depending on the coupling between them.
The 0311u and B3Hg states are intermediate between Hund's
coupling cases (a) and (b) (Herzberg 1950), but both go over
to case (b) with increasing rotation. Since we are inter-
ested primarily in large rotational quantum numbers and
since we wish to simplify the analysis, we assume that the
C3Hu and B3Hg states are both case (b). There is no need to
distinguish which case Xlzg+ belongs to, because it 1s a
singlet state.

For singlet states and for states belonging to case (b),
we can write J as

T =%+3, (2.6-1)

-5
where S is the angular momentum due to electron spin and X

is the total angular momentum apart from spin. We have
K=1+*H, (2.6-2)

where K is the orbital angular momentum of the electrons,

which is essentially along the internuclear axis, and N is

the angular momentum of nuclear rotation, which is
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essentially perpendicular to the internuclear axis. Since
Jd, K, and S are all quantized, J can have the following

2S+1 possible values for a given value of K:
J = (K+S), (K+S-1), (K+5-2), ..., |K=-S|. (2.6-3)

The numerical superscript in the symbol of the elec-
tronic state is the value of 2S+1. For the singlet state
1. +

- X Zg , wWe have

S = 0, (2.6-4)
whereas for the triplet states C3Hu and B3Hu, we have
S = 1. (2.6-5)

Since 1} is perpendicular to ﬁ, K is given by

K = (02 + N2)1/2, (2.6-6)

Whereas K and A are quantized, N is not quantized but must

be such that K has one of the wvalues
K = A, A+1, A+2,.... (2.6-7)

The Greek letter in the symbol of the electronic state de-
notes the value of A. TFor the I state Xlzg+, we have
A =0, (2.6-8)

3

whereas for the II states C I, and B3Hg, we have

A= 1. (2.6-9)

For the xlzg+ state we have accordingly
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> -> ->
Jd =K =N, (2.6-10)

so that there is no ambiguity in labelling the rotational
levels. This is why the distinction between case (a) and
case (b) is pointless for this state.

The situation is complicated, however, for the CSHu
and B3Hg states. Each rotational level 1s split into two
levels, one for each direction of X (A-type doubling).
Furthermore, for a given value of K, there are three possible

values of J, one for each direction of S (triplet splitting):

J = K+1, K, K-1. (2.6-11)

For a given value of K, the energy difference produced
between the levels by A-type doubling and triplet splitting
i1s small compared with the energy difference Between the
levels for different value of K. Corrésponding to the
splitting of the rotatlonal levéls; each line of the second-
positive band system, which 1s produced by a transition

from a rotational level K! in the c3nu state to a rotational
level K" in the B31'[g state, 1s split into several lines of
slightly different wavelength. Since the resolution of the
spectrometer used in Kyser's experiments was not great
enough to resolve the A-type doubling and triplet splitting,
we will neglect them here. This will simplify the analysis

3

by allowing us to treat the C Hu and B3IIg states, for the

purpose of calculating the populations of the rotatlonal
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levels and the line intensities, as singlet states with the
rotational levels labelled by K instead of J.

For the ¢3I_ and B3Hg states, K is related to N by

K = (1 + n8)1/2, (2.6-12)

For large values of N, which are of interest here, the fore-

golng formula becomes
K =N. (2.6-13)

Hence, exactly for the X12g+ state and approximately for the

C3Hu and B3Hg states, K is equal to N.
Henceforth, we will write all our equations in terms

of K, rather than J or N.
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CHAPTER 3

DYNAMICS OF AN ELECTRON-MOLECULE COLLISION

3.1 Introduction

The objective in this chapter is to answer the question,
"If, by electron impact, an N2 molecule is excited from
the ground vibrational level of the X12g+state to the ground
vibrational level of the C3Hu state, what is the rotational

quantum number X, of the 03Hu molécule as a function of

1y

(1) The rotational quantum number K0 of the X g

molecule and

(2) The collision parameters (relative velocity,
impact parameter, etec.)?"
To answer thils question we had to develop our own analysis,
because the experimental data and analytical methods avail-
able in the literature were of no help. This literature
pertinent to the C3Hu + XlZ + excitation 1s reviewed

23
briefly in the followlng section.

3.2 Literature on Electron-Impact excltation of the

Second-Positive Band System of N, and Related

Collisions

The magnitude of the cross section for electron-impact
excitatlon of the second=positive band system of N, has been

measured by Stewart and Gabathuler (1958) and Jobe, Sharpton,
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and St. John (1967). The excitation function has been
measured by these workers and by Langstroth (1934) and
Kishko and Kuchinka (1959). None of these experimenters,
however, measured the relative cross sections of the wvarious
rotational transitions that accompany the electronic excita-
tion.

Inelastic collisions can be treated theoretically
from one of two standpoints - quantum mechanics or classi-
cal mechanics. Although the quantum approach is the more
realistic on the atomic scale (Section 3.6.1), both ap-
proaches have been used to analyze electron-molecule
collisions. The collision of interest here, however, has
not been analyzed using either approach. 1In fact, no
method for calculating the cross section for simultaneous
excitation of two or more molecular energy modes by elec-
tron impact has been developed.

The first analysis of electron-impact excitation of
rotation alone (no vibrational or electronic excitation)
was that of Gerjuoy and Stein (1955). Since then, addi-
tional such analyses have been published, the most recent
being those of Takayanagi and Geltman (1965), Sampson and
Mjolsness (1965), and Oksyuk (1966). These are all quantum-
mechanical analyses.

Electronic excitation by electron impact has been

analyzed quantum-mechanically for hydrogen only (Khare 1966).
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(This analysis treats "purely" electronic eXcitation, in the
sense that the vibrational and rotational transitions are
assumed to be unresolved.) Nitrogen is more difficult to
handle because the electronic wave function becomes more
complex as the atomic number increases. (Since this is not
true of the rotational wave function, rotational excitation
can be analyzed quantum-mechanically as easlily for nitrogen
as for hydrogen.) Bauer and Bartky (1965) used classical
mechanics to calculate the cross section for excitation of
the second-positive band system of nitrogen and obtained
good agreement between theory and experiment. Neither
Bauer and Bartky's nor Khare's analysis, however, can pre-
dict how much rotational excltation accompanies the elect-

ronic excitation.

3.3 Conservation Equations

We begin our analysis by writing the algebraic equa-
tions that govern the summational invariants of the colli-
sion -~ energy, linear momentum, and angular momentum. In
general, the angular-momentum equation must include both
orbital and spin momenta. For light molecules such as N2,
however, the spin-orbit interaction is much smaller than
the coulombic interaction between the free electron and the
orbital electrons. Hence the probabillty of the free
electron's spin being transferred to % 1s much less than

the probability of the free electron's orbital angular
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momentum beling transferred. We therefore have ftwo separate
angular-momentum equations, one for orbital angular momen-
tum and another for spin. Since spin must be automatically
conserved for electron exchange to occur (Section 3.4), we
will not write the latter equation.

The conservation equations are as follows (see below

for definition of symbols):

Energy:
(1/2)mv> + (1/2) MV + E + E_ + E_ =
0 0 e v r
0 0 0
2 2
(1/2)mvl + (1/2) MV +E, +E_ +E . (3.3-1a)

1 Vi ™

Linear momentum:

-> -

mvy + MV = mv, + MV, (3.3-1b)
Angular momentum:

wBox (4T, + &, = Wb, x (V¥ + k. (3.3-1c)

In these equations, subscript 0 denotes quantities long
before the collision, i.e., those of the incoming electron
and the X12g+ molecule; subscript 1 denotes quantities long
after the collision, i.e., those of the outgoing electron
and the C3IIu molecule; v is the velocity of the free elec~-

tron; V is the molecular translational velocity; Ee is the

molecular electronic energy; EV is the molecular vibrational
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energy; Er is the molecular rotational energy; B'is the

distance between the electron and the center of mass of the

molecule; and H is the reduced mass, defined by

w= I (3.3-2)
All velocities are relative to an inertial coordinate
system. The interaction potential between the electron and
the molecule does not appear in the energy equation because
the equations are meant to apply ocutside the interaction
region. In the angular-momentum equation, which is derived
in Appendix A, we have anticipated Section 3.5 by writing
the free electron's angular momentum classically. The

excitation energy AEe,is
AE, = E, - AE_ = 11.05 eV. (3.3-3)

We now transform to relative and center-of-mass

coordinates. The relative velocity g is defined by

g=v -7, (3.3-1)
and the center-of-mass velocity W is defined by

mv + M?
o (3.3-5)

Sl<¥

W=

> - . R
In terms of g and W, the conservation equations are as

follows:
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Energy:

2
(1/2)ug~ + E + E + E =
0 eO vO ro

(1/2)ugd + E, +E_ +E, . (3.3-6a)
1

Linear momentum:
W o= .3-6b
W = W, (3.3-6Db)
Angular momentum:
> -> > . > -
wDy X gy + Ky = uby x g, + & . (3.3-6¢)

The foregoing equations are exact.
We can simplify the energy equation because rotational

and vibrational quanta are much smaller than electronic

quanta; that is,

- << _ << AE . . 3=
Er, _Erol {Evl By E, (3.3-7)

Therefore, to a good approximation, the energy equation is
simply a balance between the change in kinetic energy and

the electronic-excitation energy:
(1/2)ugy = (1/2)ugy - AE,. (3.3-

Accordingly, the magnitude (but not the direction) of él

is determined as a function of g4

The simplified energy equation (3.3-8) gives g, as an
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explicit function of go. The linear-momentum equation
(3.3-6b) simply states that the center-of-mass velocity is
constant (which results because no external forces act on
the system) and is not involved in the evaluation of Kl;'
If we assume that the precollision gquantities go; ﬁo;
and the angular momentum of the incoming electron are giﬁen,
then we have 6 scalar unknowns - the 2 components of Kl’
the 2 angles specifying the direction of gl, and the 2
components of the angular momentum of the outgoing electron
(which are related to ﬁl). Since the angular-momentum
equation provides only 2 nontrivial scalar equations, the

system of equations and unknowns 1s underdetermined.

3.4 Difficulties in Progressing Frrther

Further progress is made in both the classical and
quantum-mechanical approaches by using the differential
equation of motion (Chapman and Cowling 1952). This equa-
tion 1is Newton's law for the positions of the collision
partners in the classical theory and Schradinger's equation
for the wave functions of the collision partners 1ﬁ the
quantum theory. For the collision of interest, however,

both approaches are difficult for the reasons given below.

(1) The interaction potential is unknown.

Whereas the conservation equations are algebraic,
Newton's and-Sohrédinger's equations are differential. To

solve either of them, we must know the electron-molecule
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interaction potential throughout all space. For the inter-
action between an electron and a homonuclear diatomic mole-
cule, however, the potential is known only at large separa-
tion distances (Takayanagi and Geltman 1965).

(2) The Born approximation is not valid.

+
The excitation cross section for the C3Hu + Xlzg

transition is large only near threshold. The excitation
function is zero at threshold (11.05 eV), rises to a maximum
at about 18 eV, and decreases monotonically with further
increase in electron energy (see Figure 5-4). Hence, we
cannot use for this collision the Born approximation of
quantum mechanics, whose basis is the assumption that the
bombarding particle loses only a small part of its energy

fo the target particle. Very few quantum-mechanical
analyses of inelastic electron-molecule collisions have

been developed using anything but the Born approximation.

(3) Two energy modes are excited simultaneously.

Since our interest is in the rotational excitation
that accompanies the electronic excitation, we must con-
gsider both these excitations together. The difficulty of
treating the excitation of more than one energy mode is
indicated by the dearth of analyses of the problem (Section
3.2).

(4) The collision involves electron exchange.

The resultant spin of the molecular electrons is

different in the triplet state CBHu than in the singlet
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1. + 1. +
state X" I . Hence, the C a T X z transition is optically

g g
forbidden by the selection rule that spin must be conserved.
The transition can actually occur by electron exchange.

The incoming electron, which can have arbitrary spin,
changes places with a molecular electron, which then
becomes the outgoing electron, Exchange collisions are
more complicated to analyze than collisions in which
exchange does not occur, Although the C3Hu <« X12g+ftransi_
tion has been observed in absorption* (Tilford, Vanderslice,
and Wilkinson 1965), it seems to occur by electron exchange
when it i1s excited by electron impact. The evidence for
this is that the excitation function has the characteristic

shape for electron-exchange collisions (Stewart and

Gabathuler 1958).

3.5 Present Approach to the Problem

3.5.1 Introduction of the Classical Impact Parameter

In the present state of knowledge of quantum-mechanical
collision theory, it appears hopeless to calculate accurate-
ly by gquantum-mechanical methods the cross section for

simultaneocus electronic and rotational excitation for an

¥ ,
Selection rules for optical transitions vary in "strict-
ness". The rule that spin must be conserved is one of

those most frequently violated in nature.
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electron-exchange collision for which the Born
approximation is not valid. We therefore turn our attention
to a semiclassical approach.

The conservation equations for energy and linear mo-
mentum are valid in both the quantum and classical theories.
The angular-momentum equation is not usually written in a
quantum theory, but it is valid if the angular mementum is
written in a quantum form. To make further progress, how-
ever, we write the angular momentum of the free electron as
the vector product of distance and linear momentum. From
this point on, the analysis is not purely quantum-mechanical,
because the impact parameter is strictly a classical concept.
We discuss the implications of this step in Section 3.6.

The coordinate system is shown in Figure\341. The
origin is on the internuclear axis midway between the nitro-
gen atoms. The axes are chosen so that, before collision,
the molecule is aligned with the z axis and has angular
momentum IKOI in the positive-x direction. Hence tﬁe com=-

ponents of KO are as follows:

(Ry), = ALK, (K +1)1H2, (3.5-1a)
(i{*o)y = 0. (3.5-1b)
(X)), = O. (3.5-1c)

In Equation (3.5-1la) #=1.054x10"°' erg-sec is related to
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Planck's constant h by h=h/2x. We put arrows over the

components of K to avoid confusion with the quantum number
K. We assume that a collision occurs only if the electron
strikes the internuclear axis (which we assume has a finite

width w), so that the components of ) are as follows:

D, = 0. (3.5-2a)
Dy = 0. (3.5-2Db)
D, = -D. (3.5-2¢)

The distance D is related to the impact parameter b for the
collision. We emphasize that our coordinate axes are
aligned with the initial directions of the internuclear
axis and K; they do not rotate with the molecﬁle. The
collision occurs in a time interval that is small compared
with the period of rotation of the molecule, however, so
that the molecule stays practically aligned with the gz

axls during the collision. Hence Equations (3.5-2) hold
for both BO and 51. The direction of g relative to the
axes 1s specified by the polar angles ¢g and eg, SQ‘that.we

have

g, = & sin ¢g cos eg. (3.5-3a)

gy = g sin ¢g sin eg. (3.5-3b)
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gy = & cOs by (3.5-3¢)

With the foregoing notation, we can write the angular-
momentum equations in component form as follows:

X _component:

Dy gg sin ¢gosin ego + ﬁ[KO(KO+1)]1/2 -

uD; gy sin ¢g1 sin~6gl + (Kl)x. (3.5-4a)
y component:

uDO 80 sin ¢ cos Sg
>
uD; g sin ¢ coS Gg + (Kl)y' (3.5-4b)

z component:

(%), = 0. (3.5-kc)

The unknowns in Equations (3.5-4) are the final impact
Adistance Dl,.the angles ¢g1 and egl that specify the direc-
tion of El, and the two components of ﬁl‘ By introducing
the classical impact parameter, we have reduced the number
of unknowns by one. Instead of the 2 components of the out-
going electron's angular momentum, we have the scalar
quantity 51.

The magnitude of %l is given in terms of its components
by

Ryl = @D+ @D+ @p2rt/? (3.5-5)

and in terms of the final rotatlonal quantum number Kl by
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I}‘%l‘z = #°[K (K;+1)]. Solving for K, , we obtain

gy = {-1+ D1+ R |12 e (3.5-6)

Thus, K7 is a function of the precollision quantities as

indicated by

3.5.2 Exploitation of the Integer Nature of the Final

Rotational Quantum Number

It is possible to make the system of equations and unknowns

determinate by exploiting the quantum requirement that

K; = (an integer). (3.5-8)
For given values of the precollision quantities, only certain
combinations of values of the postcollision quantities will

yield an integer value for K These postcollision quan-

ll
tities have the ranges (See Figure 3-1)

-ry€Dy < . (3.5-9)
0 <¢_ < m. (3.5-10)
&1
0 <8, < 2m. (3.5-11)
&1
If we consider Kl to be a continuous function of Dy, ¢g s
21
and 8_ , then K, will in general have a minimum value K
&1 1 1min
and a maximum value K1 . The possible integer values of
max
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Kl are the integers between K1 and Kl . We can solve
v min max
for the extremal values of K1 in closed form in the follow-

ing way.

-
We can manipulate the solution for lKll.into the form

lﬁilz = a + b[b + ¢ cos(egl—ego) - 2lﬁ0| sin 8y J,
1

(305"'12)
where
_ 2 * 42
a = (e/2)% + |Kp| +.|Ko| ¢ sin 6, (3.5-13a)
b =uD; gy sin ¢gl, (3.5-13b)
= 2 D i . .5-13c¢c
e W Dy gy sin ¢g0 (3.5-13¢)
The value of &g at which ,ill achieves an extremum is given
1
by |
c sine_ -2 ‘? 1
tan o 20 oL (3.5-14)
an = -
e .
g1 C cos g

Equation (3.5-14) has two solutions (which yield a minimum

and maximum of ‘Kl‘ ), given by

g .
= e -
g, = 1o n- (3.5-15)
Thé value of ee is independént of D1 and ¢Q .  Farthermore,
1
D1 and ¢g appear only in b, so that we can consider b as a
1
single unknown. If we replace eg by ee or ee + m, we can
1
write Equation (3.5-12) as
> 42 _ 2 -
(lKll )g = a * b” + bQ, (3.5-16)
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where

— + -— d 1 . 4 -
Q = #lc cos(8, ego) E’Kol sin 6_] (3.5-17)
The plus sign goes with 6_ =6_, and the minus sign with 8
&1 ° &1
=0+ 7
e

The extremal value of ([Kllg)eoccurs when

b = b, = -Q/2. (3.5-18)

This extremum is a minimum, and (‘Kllzé increases monotonic~

ally as b is varied away from be' If '%@l is large enough,

we will have

'bef > PGBy (3.5-19)

which is impossible because of Equation (3.5-9). Thus, we

have the following cases (We use the notationL = HPG8q + )

Case I: Q < 0. (3.5-20)
Ky =K; when b = -L. (3.5-21a)
max
b =b., if by < L
K = Ky when e’ © - (3.5-21b)
min b =1L, if bg 2 L
Case II: Q > 0. (3.5-22)
K1 = K when b = L. (3.5-23a)
max
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b = by, if ]be|<L
K1 = K when . (3.5-23Db)
min b = =L, if |be\zL
Case III: Q = 0. (3.5-2L)
In this case, we have
> 2 2
(]K ] ) =a+ b, (3.5-25)
1 e
so that we have
Kl = Kl . when b = 0. (3.5—26&)
min
Ky = K;___ when |b| = L. (3.5-26Db)
max

Numerical calculations for typlecal values of the ini-
tial collisional parameters indicate that Kl can take on
only one or two possible integer values for each set of
initial conditions. Thls occurs because relatively little
rotational excitation can take place for the initilial condi-
tions of interest. For example, for an initlal rotational
gquantum number KO=10, Kl can range from 8 to 12 for all
values of relative velocity go and impact distance DO that
occur in the spark (Section 5.5.2). The possible values of
Kl are shown in Table I for several typlcal cases.

The range of gp in Table I is that over which the col-
lision cross section 1s significant. The range of DO corre-
sponds to the radius of the N2 molecule. The angles ¢g =

Gg = 1/2 give the maximum transfer of angular momentum.
0
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TABLE I - POSSIBLE INTEGER VALUES OF K;

FOR TYPICAL CASES: Ko = 10, ¢_ =7/2 6, =m/2

&g T B
Possible Integer
golem/sec x 108) Dplem x 1079) values of Kj

3.0 5.4 11, 12
3.0 3.6 10, 11
3.0 1.8 10, 11
3.0 0 10

3.0 -1.8 9, 10
3.0 -3.6 9, 10
3.0 -5.4 8, 9
2.2 -1.0 10

2.4 -1.0 10

2.6 -1.0 9, 10
2.8 ~1.0 9, 10
3.0 -1.0 9, 10
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In summary, the possible integer values of K1 (which
are functions of KO, 8y DO’ ¢go, and ego) can be found
using only the conservation equations and the guantum condi-
tion. Neither the interaction potential nor the detaill of
the electron's trajJectory 1s utilized. The quantum condition
makes the system of equations and unknowns determlnate by
effectively eliminating Dl’ §gl, and le as unknowns. This
approach to the analysis of the collision may be called a
"quantized classical model". To our knowledge, this quantum
condition has not previously been used_to solve a collision
problem. The use of this condition is one of the novel
aspects of the present analysis.

Since more than one Ilnteger value of K1 is possible
for some sets of collision parameters, the quantized classi-

cal analysis does not determine Ki uniquely. In Section

5.5.1, we discuss how we account for this nonuniqueness.

3.6 Validity of the Classical Approach

3.6.1 Uncertainty in the Electron's Trajectory

Although we have explolted the fact that K1 is quan-
tized, our analysis 1is partly classical because we have
written the free electron's angular momentum as the product
of the linear momentum and the impact parameter. A basic
assumption of classical mechanics is that an object, such
as the free electron in the present problem, is a point

mass whose position and momentum are known precisely at
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each point on its trajectory. In reality, however, an
object has not only a particle nature but a wave nature,
which 1s characterized by its de Broglie wavelength AD.

In a collision problem, the bombarding object can be assumed
to travel on a well-defined trajectory only if AD is small
compared with the characteristic length of the scattering
region. For the present collision, the characteristic

length is the internuclear distance of N2(X12 +)

= 1.094 x 10—8 cm. The de Broglie wavelength AD is

, which is
2 T

given by

A, = b/m v, . (3.6-1)

By using as a typical electron velocity the value Ol 3 X

108 cm/sec, we obtain

Ap/2 Ty = 2. (3.6-2)

0
Hence, the free electron's trajectory is in fact "smeared
out" over a distance that is large compared with the inter-

nuclear distance.

We see the effect of this smearing from the following
consideration. Our classical picture of the collision 1s
the one sketched in Figure 3-1. If, for simplicity, we
consider the case ¢g0 = ego = n/2, then we assume in our
classical analysis that we know DO precisely and that the

z component of EO is precisely zero. In reality, however,

there are uncertainties ADO in the impact distance and
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Ago in the z component of the relative velocity. These
Z

uncertainties are related by Heisenberg's uncertainty
principle:

m Ag, AD, 2= h. (3.6-3)
z

If we have the large (relative to typical values of VO)

uncertainty in 8o of Ago = 108 cm/sec, then we obtain
z Z

ADO / 2 rg = 6. (3.6-4)

With a more precise knowledge of 8gps Our knowledge of D0
would be even less precise. This relatively large uncer-
tainty in DO produces a large uncertalnty in the amount of
rotational excitation that results from the collision. 1In
spite of this, the classical approach has 1in fact been used
successfully to analyze the type of collision of interest

here.

3.6.2 Precedents for Analyzing the Collision

Classically

Gryzinski, in particular, has developed a classical
analysis of atomic collisions. Thils he applied to, among
other collisions, excitation of atoms by electron impact
in which electron exchange occurs (see Gryzinskl 1965).
Bauer and Bartky (1965) extended Gryzinski's method to
electron-molecule collisions and used it to predict the
cross section for excitation of the second-positive band

system of N2. As we mentioned in Section 3.2, Bauer and

Bartky's predicted cross sections agree well with measured
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values,

In view of Bauer and Bartky's success in predicting
the cross section for excitation of the C3Hu electronic
state by a classical method, we feel it worth a try to
predict the accompanying rotational excitétion by means of
classical mechanies. A full quantum-mechanical analysis
would be difficult, if not impossible, to carry out, where-

as our quantized classical analysis 1s relatively simple.
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CHAPTER 4

POPULATION OF THE C3Hu ROTATIONAL LEVELS

AS A RESULT OF THE COLLISIONS

4.1 Introduction

In this chapter we derive the formula for the

population NK of the rotational level K1 of the ground

1
vibrational level of the C3Hu electronic state. We obtain
this formula by calculating the fractional rates at which

the C3ﬂu rotational levels are populated by electron-impact
electronic excitation of the Xlz * molecules. We obtain
these rates, in turn, by examining the statistics of the
electron-molecule collisions, based on our quantized

classical analysis (Chapter 3). 1In Chapter 5, we shall

obtain numerical results from this formula.

4.2 Proportionality of the C3Hu Population to the Excitation
Rate
The instantaneous population NK (t) is given by
1
t
(4.2-1)
N t) = r -r at!
Kl( ) f (.ex,Kl em,Kl) >
0
where ox K is the rate of collisional excitation to the
2

1
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rotational level Kl of the ground vibrational level of

N (C3H ) and r is the rate of radiative de-excitation
2 u em,Kl

from this rotational level. All other population and
depopulation processes are negligible (Chapter 2). We

assume that the rates are constant with time, so that

Equation (4.2-1) reduces to

Ne (8) = (r

1 ex,k. ~ F

1

) t. (4,2-2)

em,Kl

The rate of radiative de-excitation Teom . K is the number of
71
molecules per unit time that undergo any of the possible

downward radliative transitions from the rotational level Kl'
From the standard formulas for spontaneous emission

(Herzberg 1950), we obtain

l"em,Kl = AN (4.2-3)

where the proportionality factor A is independent of Kl'

By substituting Equation (4.2-3) into Equation (4.2-2), we

obtain
(4.2-4)

where the proportionality factor B(t) is independent of Kl’

Hence the instantaneous population NKl varies with K1
in the same way as does the excitation rate rex,Kl’ so that
the problem of calculating NKl reduces to that of calculat-

ing Tox K In Section 4.3, we shall derive the formula for
gt
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rex K as a function of Kl'

71

4,3 Derivation of the Formula for the Excitétidn Rate

4,3,1 Relation to the Collision Rate

The excltation rate r is the number of exciltation

ex,K1
collisions per unit time in which the precollision quanti-

rties KO’ EO, and D0 are such as to yield K1 as the final
rotational quantum number. We can separate the dependence
on KO’ EO’ and DO in the following way. The rate of excita-
.tion collisions 1n which the 1nlitial rotational quantum

number 1s KO is proportional to the number NKO of molecules
that are in the rotatlonal level KO of the ground vibration-
al level of N2(X12 +). Since the fraction of molecules that
are excited during the spark duration is small (Chapter 2),

NK is practically constant during the spark. If we let
0

KoKy

are excited by electron impact to the Kl rotational level

be the fraction of molecules in the group NK that
0

of the ground vibrational level of N2(C3nu).per unit time,

then we have

Tex,K; =%:.NKO KKy - (4.3-1)
0

Now consider the phase space in which the coordinates are

gp» ¢, » 8, , and D, (or equivalently, EO and DO). For a

g0 Bp
glven value of KO, each point in this space corresponds to
a value Ki of Kl’ i.e., if an excitation collision occurs

in which the precollision quantities are KO, go, and DO,
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then the final rotational gquantum number will be Ki. Because

K! is discrete-valued, there is a finite volume Tx k! in

1
) 0°71
this space that corresponds to Ki. There is a set of these
volumes for each value of K,. If we define B(EO,DO) such
that N B(E , D) dé dD, is the number of excitation
KO 0 0 0 0
collisions per unit time in which the initial rotational
quantum number 1is KO, the initial relative velocity is in

the range EO to §0+d§0, and the impact distance in thé

range DO to DO+dDO, then we have

- >
o g = f B(8,sD,) dgy dD,- (4.3-2)

T
Kgs¥y

The relative excitation rate B equals the relative
collision rate v times the probability F that a collision

will produce the electronic excitation:
> -
B(goa DO) = F(go) V(gos DO)’ (M.3—3)

We write F, which is proportional to the excitation function
1

for the C3Hu + X Zg+ transition, as a function only of 89
because there is no experimental evidence that F depends
on anything else. By substituting Equations (4.3-2) and
(4.3-3) into Equation (4.3-1), we obtain finally
Tex,Ky ~ Z Ny f Fgy) v(gg» Dy) gy dDy
K, O

T

Kgs¥q (4,3-1)

We now derive a formula for v(go,'DO).
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4,3,2 Derivation of Formula for the Collision Rate

We follow (but modify slightly) the derivation given
by Chapman and Cowling (1952), Section 3.5. We begin by
counting the number of collisions occurring during the time
interval dt and in which the 1nitial molecular rotational

quantum number 1s KO’ the impact parameter between b, and

0
b0+db0, the electron velocity between ?O and ?O+d?0, and

> > >
the molecular velocity between VO and VO+dVO. Since we are

taking the molecular structure 1into account, we must also

>
specify the orientatlon of Ko and of the 1lnternuclear axls.

>

The direction of KO is specified by the polar angles ¢K
0

and 9K , and the direction of the internuclear axis is
0

specified by the angle ¢ between the internuclear axis and
) >

an arbitrary line in the plane perpendicular to KO' We
specify, then, that £6 lies within a solid angle df and
that the internuclear axis lies in the range § to d&+d§.
For such a collision to occur, the electron must be in
the cylinder sketched in Figure U-1 at the beginning of the
interval dt. Here w 1s the wildth of the molecule. The

volume of the cylinder is

where wdb0 replaces the factor bdbde€ that appears for
colllisions between point particles. We replace dbO in

terms of dDO by
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Figure 4-1: Cylinder Used to Calculate

the Collision Rate

>

€0

Figure 4-2: Relation between the Impact

Parameter and the Distance Along
the Internuclear Axis
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dby = dDy sin v, (4.3-6)

where ¥ 1s the angle between éo and the internuclear axis
(see Figure 4-2). There 1s one cylinder of this type for
each molecule of the specified type. The fraction of mole-
cules with velocity between VO and 70+d§0 is fM(vO)de,
where fM i1s the molecular veloclity distribution function.
Since all directions of ﬁd and of the internuclear axls are
equally likely, the probability that KO is 1n the solid
angle dQ is dQ/4w, and the probability that the internuclear
axis in the range § to 8+d6 is dé&/2mn. Hence the number of
molecules of the specified type (and hence of cylinders) 1s
Ny £,(Vo) @V, aq/km) (as/2m). (4.3-7)

The total velume of the cylinders 1s therefore

(w dt) NKb (V) a¥, g, sin y ap, (ap/4m) (as/2m).
(4.3-8)

Since the number of electrcns in the range $O to $0+d$o
1s N (V,)dV, (where N, is the total electron density and
fe is the electron velocity distribution function), the
number of electrons in this total volume is

(w dt) NKO fu(Vo) £(Vy) aV, av, g, sin y dD,

(aQ/4m) (ds/2m). (4.3-9)

Since each such electron represents a collision of the
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specified type, the number of collisions of the specified
type 1s given by the foregoling expression, and the rate of
these collisions is given by the above expression divided
by dt:

av

> > -+
w N fM(VO) fe(vo) av

KO sin y dD, X

0 Vo &g 0

(al/b4m) (adsam). (4.3-10)

We now transform to relative and center-of-mass
velocities, as in Chapter 3. The product of elemental

volumes in velocity space becomes

-> ->

-> > "
dv, dv, = dg, 4aW - (4.3-11)

By substituting Equation (4.3-11) into expression (4.3-10),

we obtain

N . > > > > > > %
W KO gy sin Y dg, fe(gO,W) fM(gO,W) dw db,

(aftzhm) (ad/am). (4.3-12)

Comparing the foregoing expression with Equation (4.3-4),

we obtain

v(go, D,) = w g, sin yg[:/:/}é<g0, 0 fM<gO, W) %
R Was
dw (df/4m) (assam), (4.3-13)

where the integration is taken over all possible values of

>
W,Q2, and §.
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4.3.3 Integration over the Center-of-Mass Velocity

and the Orientation of the Internuclear Axis

To perform the integration over W; we must know the
form of the velocity distribution functions. We are con-
sidering only the case in which fM 1s Maxzwellian. As we

show 1n Appendix B, fe also is Maxwellian. Hence, fe and

fM are given by

£ (¥y) = C_ exp(-mv5/2kT,), (4.3-142)
_ > 2
£,(Vy) = Cy exp(-MVS/2KT ), (4.3-14b)

where Ce and CM are constants and Te and TO are the electron
and molecular temperatures, respectively. In terms of go

->
and W, the product fefM becomes

e 0
1 1 .
+ 2|75 - 7] g, Wcos¥jtx
' (Te TO) 0 ]l
.2
p[gl.{. (m..%.. +E%-5) gg} : (.3-15)

where ¥ 1s the angge between §O and W.

We use the coordinate system illustrated in Figure 3-1.
The directions of W and go are taken relative to the orilien-
tations of KO and the internuclear axis. As we mentioned

above, ﬁo and the internuclear axis are randomly oriented
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relative to a fixed coordinate system. The integrations
over 9 and 6, which we will perform later, will account for
all possible collisions. The direction of W relative to the
coordinate system shown in Figure 3-1 is specified by the

polar angles ¢w and ew as follows:

W =W sin ¢, cos @y- (4.3-16a)
Wy = W sin ¢, sin gy. (4.3-16b)
W, = W cos 6,. (4.3-16c)

The elementary volume in velocity space is

aW = W° 4w sin ¢, Ao, Ao (4.3-17)

w’
and the angle ¥ is given by
cos ¥ = sin ¢w cos ew sin ¢g0 cos ego +

sin ¢, sin 8. sin ¢g sin eg + cos ¢w cos ¢

W 0 0 0
(4.3-18)

The angle vy 1is given by
Yy = ¢_ . (4.3-19)

The inftegral Iw over W'can thus be written

( ‘) .
- Lim B )y
Ty = [ f exp | - 2k[(Te oo
W=0  ¢7=0 6 =0

sin ¢w d¢w ae, .. (4.3-20)
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The integrals here can be evaluated in closed form, if we
‘neglect terms that contain the small quantities m/M and
TO/T

er The result is

IW = (a constant). (4,3-21)
Hence Equation (4.3-13) becomes

\ | N 1\
v(8g,Dp) = C A &g sin v eXP[‘ 5% \mm- T T, B0 ]*
e

(a@/lbm) (ds/2m), (4.3-22)

where the constant C is given by

C=w Ce Cy I

M w- (4.3—23)

The integrand in Equation (4.3-22) is independent of

2 and 6. Hence the integrations over these angles yield

Yo
de/dm™ =1, (4.3-2L4a)

Q=0

k2w
f as/em = 1. (4.3-2Lb)

6=0

By substituting Equations (4.3-24) into Equation (4.3-22),

we obtain

2 |
1 1\ 2
v(EqsDg) = C gy sin ¥ exp {‘ %EGEF‘ + ﬁTB)go ]
e

. (4.3-~25)
With the use of the approximations ﬁ =~ m, m << M, and

Ty << Ty, the exponential factor in Equation (4.3-25) becomes
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exp(-mgg/2kTe), so that Equation (4.3-25) becomes
V(Zy> Dy) = C g, sin y exp(-mg5/2KT ). (4.3-26)

Substituting this result into Equation (4.3-4), we obtain

2 .
rex,Kl = Cz NKO / F(go) exp(-mgo/nge) X
KO

T
KO,K1

->
sin v g, dg, dD,. (4.3-27)
The elementary volume in veloclty space is given by

> _ 2 : .
dgy = g; dgg sin ¢go d¢g0 ngO; (4,3-28)

By substituting Equations (4.3-19) and (4.3-28) into Equa-
tion (4.3-27), we obtain the following expression for the

excitation rate in terms of the precollision quantities:

2
ro. g = cz Ny f F(g,) exp(-mgg/2kT ) X
oL X 0 =
0

3 2 , \
g dg, sin ¢g0 d¢, - de_ dDg. (4.3-29)
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CHAPTER 5

EVALUATION OF THE PHASE-SPACE INTEGRAL

5.1 Introduction

Although Equation (4.3-29) enables one to compute

Tox K in principle, the evaluation of the phase-space inte-
71
gral in Equation (4.3-29) is difficult in practice. In

fact, the development of a method for evaluating this inte-
gral was a major problem in the present research. The

complexity of the integration region TK K. whose geometry
0°71
is determined by the collision dynamics (Chapter 3), pre-

cludes evaluating the integral in closed form. Standard
methods of numerical integration are not feasible because

the integral is over four variables (g., Dn, ¢_. , & ) so
0> 70% "8y &g

that a prohibitive amount of computer time is required to
obtain any amount of accuracy. Additional difficultiles are

that < is not known explicitly and that X
Kos¥q 1

crete-valued, rather than a contilnuous, function of KO, 8g>»

is a dis-

DO’ $ , and 6 . A Monte-Carlo method, however, proved to
o &0

be feasible. In the present chapter, we explain the appli-

cation of this method to the evaluation of the phase~space

integral.
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5.2 Monte~Carlo Evaluation of the Phase-Space Integral

5.2.1 Description of the Monte-Carlo Method

The Monte-Carlo method (see Brown 1956 for the intro-
ductory discussion) has been used by previous workers
(Karplus, Porter, and Sharma 1965) to analyze molecular
collisions similar to the present one. The Monte-Carlo
method simulates the huge number of random collisions
occurring in the gas by computing the results of a much
smaller number of collisions. These collisions are chosen
randomly, except that the collisional parameters are chosen
proportionately to how frequently they actually occur in the
gas.

5.2.2 Example of the Monte-Carlo Evaluation of an

Integral
Consider the quantity I defined by
b
I= f £(x) dx, (5.2-1)
a

where 0 < f(x) £ M. To evaluate I by the Monte-Carlo Method,
we choose a large number of pairs of random numbers X and Y,

in the ranges

a

IA
>
IA
o

(5.2-2)
0=Y<MNM

For each pair of values, we perform the following test: is

62



Y £ f(X)? This is illustrated in Figure 5-1, which shows

two random points - (Xl’ Yl) and (XII’

Y For point I,

II)'

the answer is no; for point II, the answer 1s yes. If n is

the number of pairs for which the answer is yes and N i1s the

total number of pairs tested, then I 1s given by

I = (n/N) M (b-a).

(5~2"3)

The answer becomes exact in the 1limit as N-»», that is,

I =M (bea) 158 (n/N).

For multiple integrals, the Monte-

(5.2-4)

Carlo method often

is superior to ordinary numerical integration (quadrature).

The Monte~Carlo method, in fact, may be feasible for inte-

grals for which quadrature is hopelessly impractical. By

this we mean that the number of points
given error (standard deviation) using
1s much less than the number of points
the same error using guadrature. This

Monte-Carlo points are chosen randomly

required to obtain a
the Monte-Carlo method
required to obtain
results because the

over the integration

volume, whereas the quadrature points are chosen in a pre-

determined way (usually equally spaced). A given number of

randomly chosen points can "fill up" the integration volume

in a more representative fashion than the same number of

points chosen in a pre-determined manner (Brown 1956).
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Figure 5-1: Illustration of the Monte-Carlo
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5.2.3 Application of the Method to the Phase-Space

Integral

Because of the special nature of the phase-space
integral, we use.a modified version of the method described

in the preceding section. The phase-space integral I

KO,K_l
with which we deal is given by
I = F(g,) exp (--mg2 /2kT ) g3 d sin2¢
K, oKy 0 0 e’ 8o “8p 1%
T
Koo¥1
d¢_ de_ dD,. (5.2-5)

From Equation (4.3-29), we see that this integral is pro-
portional to the rate of excitation collisions whose colli-

sion parameters lie in the phase-space volume Tx  K.° The
0°71
situation 1s shown schematically in Figure 5-2, which shows

the gO—DO plane. Hence, the sketch shows a "slice" of phase

space with K, ¢g , and © fixed. The rectangle given by

0 &9

0
o
IA

Br < &
min 0 Omax

(5.2-6)

1
(W)
A

D, =+D
max 0 Omax

corresponds to the ranges of 8o and D0 over which the colli-
sions occur. Each "X" denotes a collision; only a few of
the collisions are shown. As shown, the density of X's

is independent of DO but is a function of 8o+ A possible

configuration of the T volumes is shown. In this
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Figure 5-2: Sketch of the gO—DO Plane
in Phase Space
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hypothetical case, the only possible values of Kl are

K, = K, K.+1, K

1 0°? 0 Oi2' (5~2—7)

The value of any intégral IK K is proportional to the
0°"1

number of X's within the corresponding region T K *
0°71

Figure 5-2 shows qualitatively where the volumes T are ex-

K

pected to lie in the gO—DO plane. Small values of 8g OT D

0

correspond to Kl = KO, large positive values of D, corre-

0

spond to K correspond

1 > KO, and large negative values of DO

to Kl < KO.

We define the quantity G(go) by the relation
. 2 3 8
dfG(gy) 1 = Flgy) exp (-mgy/2kT.) gy dgg- (5.2-8)

We also define P(¢g ) by

0
- \ .
= = - 2
d[P(¢gO)] = sin ¢g0 d¢g0 d[(l/2)¢gO (1/4) sin ¢gO],
(5.2-9a)
1.e., P(¢go) = (1/2) ¢go - (1/4) sin 2¢g0. (5.2-9b)

By substituting Equations (5.2-8) and (5.2-9) into Equation
(5.2-5), we obtain
I _ dlG(g,)] ab, d[P(¢ _ )] dae_ . (5.2-10)
KO’Kl —f 0 0 gO go
T
Kgs¥q

Hence, IKO’Kl is the volume TKO’Kl in the phase space in
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which the coordinates are G(go), Dys P(¢ ), and & _ . We
g9 g9
illustrate this schematically in Figure 5-3, which is the

same as Figure 5-2 except that 1t shows the [G(go)]—DO plane
with K, P(Cbg ), and Gg fixed. This figure shows schemat-
0 0
ically the situation that was found in most of the numerical
computations, that is,
Ky-Kg-2 = “Kg,K +2 KpsKg-1
(5.2-11)
=T << I

KnoKq+1 KA,K

0°70 0°70

Having put IKO’Kl in the form of Equation (5.2-10), we
can apply the Monte-Carlo method in a straightforward manner.
For a given value of KO, we do the following:

(i) Choose random values of G(go), Dy P(¢gOL and ego
distributed uniformly within their respective ranges.

(i1) Compute the value of K1 that corresponds to each
of these sets of values of the collision parameters.

(1ii) Repeat steps (i) and (ii) a large number of times
fecall this number S(KO)], keeping count of the number of
times each value of K

] occurs [call these numbers q(KO,Kl)].

Then, IKO’Kl is given approximately by

IKO,Kl = (const.) q(K,,K) / s(K,). (5.2-12)

Substitution of Equations (5.2-5) and (5.2-12) into

Equation (4.3-29) leads to
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Figure 5-3: Sketch of the [G(go)]~Do Plane
in Phase Space
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rex,Kl = (const.)jE: NKO q(KO,Kl)/ S(KO)’ (5.2-13)
K
0

By putting Equation (5.2-13) into Equation (4.2-4), we then

obtain finally

NKl = (const.) E NKO a(Ky,K ) /7 s(Kg). (5.2-14)
K
0

The computations of NK as a function of K1 were performed
1
by means of this equation.

In order to perform the computations of NK , we must
’ 1
know the populations NK of the X12g+ rotational levels and

0
the functions of the relative speed contained in G(go). In

Sections 5.3 and 5.4, we explain how we obtained these
values,

+
5.3 Populations of the Xlzg Rotational Levels

We consider only the case in which the gas 1is in equi-
librium before the spark is struck, so that it has a rota-
tional temperature TO equal to the translational temperature.

In this case, the number NK of molecules per unit volume in
0
the ground vibrational level of X12g+ is given by the

Boltzmann distribution

N = Coomst.) o(Ky)(2Ky+D) expl (-h%/2IKT) K, (K 1)1,

where the constant 1s independent of KO and where Io“is the
moment of inertia of the X12g+ molecule. The subscript is
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appended because the moment of inertia is smaller in the

X12g+ state than in the C3Hu state, the values being

1.382 x 10739 gm-cm? . (¥'Zg

am}
il

(5.3-2)

i
]

1.523 x 10757 gm-cm® . (c3nu)

The factor ¢ is a population-alternation factor that appears
in the statistical weight of a gas consisting of homonuclear
molecules; the alternation is caused by nuclear spin (Herzberg

+

1950). For N2(X12g ), it is given by

6, K, even
o(Ky) = : (5.3-3)
3, KO odd

5.4 TFunctions of the Relative Speed

5.4.1 Excitation Function

We obtain the excitation function F(go) that is con-
tained in G(go) from experimental data, the references for
which are listed in Section 3.2. We use the data of Kishko
and Kuchinka (1959) as plotted by Bauer and Bartky (1965),
because these data give the correct result at threshold,
viz., F(gO) = 0. This function is plotted in the usual form
(F versus (l/2)‘ug02) in Figure 5-U4. We have made the fol-

lowing least squares fit to the data:
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Fg ) = 618.8 - 1159 V + 813.0 V2 -253.4 v3
+ 29.65 vH s (5.4-1a)
for 1.97 cm/sec £V = 2.52 cm/sec,
F(go) = 17.28 - 9.891 V + 1.471 V2, (5.4-1b)
for 2.52 cm/sec <V = 3.02 cm/sec,
where
V= gg x 1078 cm/sec. (5.4-2)

The maximum speed for which the least-squares fit is wvalid

8

(gg = 3.02 X 10” cm/sec) corresponds to an electron energy

of 25 eV.

5.4.2 The Integral Over the Relative Speed

Let gy . Dbe the minimum value of 8o used in the cal-
min
culations (go = 1.97 X 108 em/sec). Since F(go ) = 0,
min min -
we have
Glgg = ) = 0. (5.4-3)
min

Then, from Equation (5.2-8), we have

0
G(go) = J(g F(x) exp(-mx2/2kTe) %3 dax. (5.4-4)
g0
min

In view of Equations (5.4-1), a closed form expression for

G(go) can be obtained by evaluating the integrals

u

2
I =/ X2 =X gy (n=10,1, ..., 5) (5.4-5)
n 4

The results of evaluating this integral are given in
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Appendix C. (Although I, does not appear explicitly in
G(go), I, must be evaluated because it appears in the for-
mulas for I, and IM')

It was necessary for this study. to know the inverse
relation gO(G),because we chose random values of G rather
than 89 itself. We obtained the inverse relation by making
a least-squares polynomial fit to the formula for G(go).

The result is

g, = (-2.00 x 10° 6® +1.88 x 107 6% - 6.79 x 107 @*
+1.20 x10° 63 - 1.10 x 10" ¢ + 68.5 G + 2.00)
X108 cm/sec, (5.4-63)
for 0 < G < 2.83 x 1072 (cm/sec)u.
gy = 2.52 X 108 cm/sec, for G = 2.83 X 10_2(cm/sec)4.

(5.4-6D)

g, = (6.36 x 107 6¢° - 1.19 x 109 g" + 8.81 x 107 &3
23.26 x 10° 6% + 5.98 x 10% @ + 4.35 x 10°
'x108 cm/sec, (5.4-6¢)
2

for 2.83 X10°° < @ £ 4,53 X 10—2 (cm/sec)u.

5.5 Numerical Procedure

5.5.1 Steps in the Procedure

We compute the variation of NK as a function of Kl by
1
the following steps (here we discuss the specific detalls of
the procedure mentioned at the end of Section 5.2.3):

(i) For a fixed value of KO’ we compute 200

T4



pseudorandom sets of collision parameters each chosen as

follows. Four pseudorandom numbers - RI’ RII’ RIII’ v -

are computed by a method described in Appendix D. We then

R

set
P(¢go) = ("/4) Ry, (5.5-1)
ego = MRyrs (5.5-2)
Dy = rg (2 Rypp - 1), (5.5-3)
G = 4,53 x 1072 Ryye (cm/sec)u (5.5-4)

This gives uniformly distributed values of P(¢, ) between O
' 0
and T/4, eg between 0 and T, D, between -r; and ry, and G
0
between 0 and 4.53 X 10-2(cm/sec)u. The values of ¢g are

, 0
distributed between 0 and /2, and the values of (1/2 gg)
are distributed between 11 eV and 25 eV. In Section 5.5.2,
the sources of the ranges of the collision parameters are

explained. We then solve the nonlinear algebraic equation

Plog ) = (/MR = (1/2)¢, = (1/4) sin 20,

0.

L

- (n/M)R; = 0 (5.5-5)

for the root ¢go by the Newton—Raphson iteration method
(Ralston 1965), and we calculate gO(G) by means of Equations
(5.4-6).

(1i) For each set of collision variables, we compute
the possible integer values of Kl by means of the quantized

classical model described in Chapter 3. 1In about 1/3 of

the collisions computed, more than one (but never more than
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three) integer values of K, are possible. For these

1

collisions we arbitrarily assume that

All possible integer values of Kl are equally probable
(5.5-6)
and therefore occur equally frequently in the collisions.
We later made a comparison to test the effect of this:assump-
tion and found that it does not affect the results signif-
icantly (see Section 7.4.2). 1In about three percent of the
collisions, no integer value of K1 is possible; these colli-

sions are excluded from the computation of NK

1
(i1i) For each value of K., the quantity I is
0 KO’Kl
computed from Equation (5.2-12), whers
S(KO) = 200 - p(KO), (5.5-7)

in which p(KO) is the number of collisions in which no

integer value of K, is possible.

1
(iv) Steps (i) through (iii) are done for

Kg =0, 1, 2, ..., 25. (5.5-8)

(v) Ny 1s computed from Equation (5.2-1L4).
1

5.5.2 Ranges of the Collislon Parameters

We obtain the ranges of the angles ¢g and eg as fol-
0 0
lows by examining Figure 3-1:

0 < ¢g0 < m/2, (5.5-9)

0<e6_ =<m. (5.5-10)
%)

When both positive and negative values of the impact dis-
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tance DO are used, all possible angles of approach and impact
point on the molecule are accounted for.
The range of 89 is
8 8
1.97 x 10~ cm/sec < gy S 3.02 X 10 cm/sec, (5.5-1la)

or egquivalently,

11 eV < (1/2)ugd <25 ev. (5.5-11b)

The lower 1limit of 11 eV is the excitation energy of the
c3nu~—xlzg+ transition and is thus the minimum possible
value of the electron energy. The upper limit should strict-
ly be infinity, but a finite value must be used in the com-
putations. We choose 25 eV because the product F(go) X
exp(—mgg/ZkTe) gg goes to zero as gg goes to infinity and is
negligible beyond 25 eV. This product is zero at 11 eV
because F(go) is zero there, rises to a maximum at about
18 eV, then decreases monotonically as g increases further.
Hence the majority of the collisions are with electrons of
energy near 18 eV, and this shows up in the Monte-Carlo
computations (see Table III).

The range of DO cannot be determlned from physical
principles, so that we must make some assumptions. We
choose to make the following two:

(1) IPgl pax = Too (5.5-12)
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i.e., the maximum possible impact distance is the
molecular radius;

(2) Any value of D, within the range

0

- |p <D, < (5.5-13)

OI max = "0 —-IDO‘ max
1s equally probable.

Assumption (1) is plausible because the collision involves

electron exchange (see Section 3.4), with the result that

the incoming electron is "captured" by the molecule. In

the context of classical mechanics, this implies that the
incoming electron must come within the molecular diameter
for the collision to occur. In the same way, assumption (2)
is plausible, that is, we expect that impact parameters are
randomly distributed in the collisions. The two assumptions
have not been checked experimentally, however.\ We are more
confident of the plausibility of assumption (2) than of
assumption (1). As explained in Section 7.4.1, however, we
found that a modification of assumption (1) does not alter
the results very much.

5.5.3 Number of Collisions Computed

For each value of KO’ we compute Kl for 200 pseudo-
random collisions, as mentioned in Section 5.2.1. We do

this for 26 values of K, (0, 1, 2, ..., 25). Since each

0

collision requires 4 pseudorandom numbers, the entire com-

putation of N requires'(200)(4)(26) = 20,800 pseudorandom

K
1
numbers. We later repeated the computations using a second
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set of 20,800 pseudorandom numbers. Hence we used only the
first'ﬂl,600 numbers of the sequence generated by Equation
(D-1) in Appendix D. Since the period of this sequence is
135,000,000, we feel'confident that our collisions satisfy
the mathematical criteria of randomness.

5.6 Results of the Computations

Using the procedure and assumptions described in Sec-

tion 5.5, we have computed the variation of NK with Kl

for the case tested by Kyser. The important p%rameters are

T, = 295°K (5.6-1)
and

3 = -

5 k Te = 4,80 eV. (5.6=2)

The value of 4.80 eV comes from Kyser's (1966) semi-empirical
analysis of the spark and corresponds to the conditions that
he tested. The value of T, determines the distribution of
N, through Equation (5.3-1), and the value of T, the dis-

0

tribution of electron speeds v through'Equation;(4.3—14a).

0
The computed valges of IKO;Kl are presented (rounded
off) in Table II for KO= b, 5, 6, ..., 21. We note the
following features:
(1) The great majority (between 63 and 76 percent) &

the collisions result in no change in rotational quantum

number, i.e., K; = Kj-
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Table II: Computed Values of p(K,) and I
0 Ky sKq

For each value of KO, the two rows of numbers refer to the

first and second set of 100 pseudorandom collisions, respec-

tively. I for the value of K., given below
KO’Kl' 1

Ko [p(Ky) |K=Kg=2 [ Kyj=Ko=1 [K3=K; |K =Ko+l [Kj=Ky+2
y 5 1 12 67 15 0

3 0 1k 67 16 0

8 0 9 67 15 0
5

i 1 13 65 17 0
’ 4 0 11 71 14 0

2 2 16 72 9 0

6 1 16 66 12 0
7

5 0 11 66 18 0
g 3 1 15 69 12 0

4 0 14 63 18 0

2 0 12 73 12 0
9

1 1 11 73 14 0

1 2 13 69 15 1
10

3 1 22 64 10 0

3 0 16 70 11 ¢]
11

3 0 12 T4 10 0

1 1 12 76 10 0
12

2 0 16 68 14 0
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Table II (continued)
7 0 8 70 14
13
L 0 9 69 18
2 1 13 73 11
14
1 1 12 66 20
y 0 14 71 12
15
2 1 15 70 13
2 1 16 73 8
16
0 1 13 68 19
6 1 12 70 12
17
1 0 16 2 10
5 0 11 73 11
18
4 0 12 T2 12
Iy 0 14 73 9
19
1 0 15 72 12
i 0 16 72 8
20
2 0 18 68 12
0 16 65 14
21
3 0 15 70 11
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(2) Very few of the collisions result in [K -K,|=2.
That is, almost all the remaining 24 to 37 percent of the

collisions result in Kl = Ko—l or K1 = K0+1.

(3) The number of collisions in which K; = K,-1 (be-
tween 8 and 22 percent) is roughly equal to the number of
collisions in which K; = K+l (between 8 and 20 percent).
The results thus show no consistent trend of favoring either
excitation or de-excitation.

(4) The foregoing conclusions apply to each value of
Ky . The results show no difference between small and large
values of KO'

The foregoing results are obtained because the electron
can transfer very little angular momentum to the molecule
in a given collision, even though the electron's energy is
much larger than the molecular energy of rotation. As we
see from the example given iﬁ Table I, the electron can
transfer only 2 rotational quanta to the molecule even if
the collision variables have the values that yield the max-

imum angular-momentum transfer, namely,

8y = 3.0 X 108 cm/sec ]
Dy =+ ry =+ 0.547 X 10°% em V. (5.6-3)
¢g0 = ego = 1/2

r
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The Monte-~Carlo computations show that most of the

collisions have collision variables that would yield less
than 1 quantum of angular-momentum transfer, with the result
that no angular momentum is transferred. This is ghown in
Table III, which lists the rounded values of (1/2)ugg, DO’
¢g0, ego, and the resulting possible integer values of K;

for the first 100 pseudorandom collisions with KO = 10.

For 52 percent of these collisions, the only possible integer

value of K., is also 10.

1
The calculated populations of the C3Hu rotational levels

are plotted in 1og—slope'form (i.e.,NK:K2K +1) versus

1
1
Kl(Klfl) on semilog paper) in Figure 5-5. We note the
following features:
(1) There are parallel curves for odd and even values

of Kl’ with the ordinates of the even-K., curve approx-

1
imately 1.4 times larger than those of the odd-K; curve.
(2) These curves are approximately straight lines.
(3) The CBHu molecules thus have approximately a
Boltzmann distribution of rotational states, so that a
rotational temperature T1 can be defined for these
molecules.

By the least-squares technique, the best-fit straight lines

were found for the odd-Kl data and for the even—K1 data.

The corresponding rotational temperatures Tl were found from

the slope of these lines by the standard log-slope method
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Table III: Values of Kl for 100 Pseudorandom Collisions

(K, = 10)
2w g2 (ev) by x10° (em) bg, () 0y () K

20 -0.02 67 179 10

17 5.3 42 131 10,11
23 4,1 81 96 11
19 4.9 53 14 10,11
17 1.7 61 37 10

17 0.8 67 89 10

19 1.1 65 25 10

16 -0.02 80 145 10

21 ~3.5 33 156 9,10

16 2.5 81 97 9,10

16 0.3 58 76 | 10

16 -3.6 56 176 10

18 b4 29 65 10,11
16 -5.4 68 41 9,10

14 -4.3 72 154 10

19 4,4 55 50 10,11
23 2.2 Th 132 10,11
13 -3.4 69 14 10

14 -4.1 U7 101 9,10

14 -3.9 66 102 9

16 ~0.4 89.9 123 - 10
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Table III (2nd of 5 pages)

18

21
14
13
15
15
12
15
13
19

16

16

3.5
-3.2
h.1

1
=
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I
Ul
»
I= o W

|
=t
= \O ~ Ul (@)Y @

g
. .
o no -~

-
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= = = [SANEERN) | g b

89
83
83
88
Iy
37
73
Il
82
51
6L
37
84
60
42
89
69
58
81
81
60
82
84
59

85

138
56
150
102
23
99
L6
72
27
64
24
151
176
87
172
Lo
164
60
61
94
Th
174
13
69

10,11
9,10

10,11

8,9,10

10
9,10
10
10,11
10,11
10
10
9,10
10
11
10
10
10

10

10
10
10
10

10,11



Table IIT (3rd of 5 pages)

16 ~-5.0 45 16 10

19 -3.6 49 17 10

17 b1 89.6 19 10

18 -3.1 51 17 10

5 0.3 89 128 10

17 4.8 79 17 10,11

17 -1.9 b3 95 10

15 b7 80 108 11

1€ -1. by 39 10

15 -3.0 61 177 10

17 ~2.3 12 107 9,10

16 -4.1 35 93 9,10

16 -2.7 59 121 9,10

12 5.2 88 82 11

16 .5 85 129 10

15 -5.3 37 18 10

16 0.2 67 58 10

20 -3.6 88 153 9,10

14 ~1.14 81 84 10

14 3.9 67 49 No Integer
Possible

23 5.1 81 102 11,12

20 3.4 T7 29 10,11

16 1.3 63 101 10
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Table III (4th of 5 pages)

16
14
17
20
21
15
21
23
19
13
19
17
19
19
17
17
18
21
20
17
15
17

23

4.5
5.9
h.9
1.5

~-0.1

1.9
1.7

1.9
4.8
0.2

~5.2

4.3
1.3

0.4

~3.2
b7
b7
1.5

1.6

2.3

-2.1

-5.1
1.9

80
7
61
43
by
22
84
73
78
79
82
81
52
51
76
85
60
39
78
58
65
50
89.8

87

109
172
T4
159
59
34
144
84
60
25
73
91

29

148

85
62

T4
52
88
133
by
140

11
10
10
10
10
10
10,11
9,10
11
10

10
10
9,10
11
10
10,11
9,10
9,10
10
9,10
10,11



Table III (5th of 5 pages)

17 -3.3 17 109 | 10
15 -3.1 76 155 10
23 -3.14 81 146 9,10
16 -1.2 50 97 10
20 ~3.1 86 90 9,10
25 -3.8 88 97 8,9,10
13 -3.6 48 135 10
13 3.0 33 146 10
15 ~1.0 60 28 10
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described in Section 1.3. The results are as follows:

m
4

1

2689K, for even Ky

(5.6-4)

0
T 267 K, for odd K

1 1
Our analysis thus predicts the surprising result that

T, < Tg- (5.6-5)

Kyser (1966) used a modification of the standard log-
slope method that we have used in this chapter. To compare
our predictions with Kyser's measurements, we must compute
the quantity that he measured in the laboratory. We shall
do this in Chapter 6.

5.7 Physical Explanation for the "Pemperature Decrease.

The predicted decrease in rotational temperature
results from the fact that most of the electron-molecule
collisions that cause electronic excitation do not change
the rotational gquantum number of the molecules very much.
(Tnere is no evidence that this effect is typical of ex-
change collisions.) Herzberg (1950), page 207, explains
the situation succlinctly as follows:

"If there were strictly no change of angular momentum
upon excitation of a molecule by electron collisions and if
no redistribution through collisions occurs in the upper
state oné would expect the rotational distribution to be
determined by the B value of the ground state (from which

the excitation takes place) rather than that of the initial
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state of the emission. In other words, if B& is used
the temperature obtained would be too small by a factor
1 "o
BV/BV.
For the second positive band system of N2, this factor

is 0.907. We note that
0.907 T, = (0.907)(295°k) = 268°k, (5.7-1)

which is within 1°K of our predicted values of Tl [Equation

(5.6-4)17.
The only effect of the collisions is to reduce the

amount of population alternation. The X12g+ rotational

3

levels alternate in the ration 2:1, whereas the C Hu rota-

tional levels alternate in the ratio 1.4:1.

As Herzberg (1950) points out, Ginsburg and Dieke (1941)
observed a decrease in rotational temperature for H2 spectra
excited in an electrical discharge. At low pressures, they
found the apparent rotatiocnal temperature deduced using
the log~slope method to be appreciably less than rcom tem-
perature. At higher pressures and current densities, *the
apparent rotational femperature became higher than room

temperature.

¥

In terms of the present notation, the rotational constant
2

1s given by B} = h/8m cIl,,B; = h/8ﬂ20IO, where ¢ 1s the

speed of light.
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5.8 Adeguacy of the Number of Collisions Computed

One might question how adequately we have simulated
the ftremendous number of collisions occuring in the spark
by using 200 collisions for each of 26 values of K,. We
have made one check on this by splitting each set of 200
collisions into 2 sets of 100 collisions each. The result
is shown in Table II. We see that the 2 sets of values of
IKO’Kl agree with each other very well. For Kj = Kg, the
maximum difference is 8 percent (which occurs for Ky = 12).
For K. = Ko—l, it is 11 percent (for Kg = 10). For Ky =

1
KO+1, it is 11 percent (for K. = 16).

0
To make a more conclusive check, we repeated the entire

computation of NK versus Kl using the second set of 20,800
1

pseudorandom numbers generated by Equation (D-1). Proceed-
ing as described in Section 5-6, we computed the following
values of Tjq:

T1 = 267°K, for even Kj

Ty = 272°K, for odd K1
These temperatures agree closely with those obtained using
the first set of pseudorandom numbers (Eguation 5.6-14).
We conclude that we have used a sufficiently large number

of collisions.
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CHAPTER 6
ROTATIONAL TEMPERATURE AS A FUNCTION

OF MEASURED INTENSITY RATIO

6.1 Kyser's Derivation

In the usual log-slope method described in Sectlon 1.3,
one measures the intensity I of the individual rotational
lines within a vibrational band. If population of the rota-
tional levels of the emitting molecules follows a Boltzmann
distribution, then the function ln(IKB/IKA) versus l/T1 is
a straight line, where KB and KA are any values of rotational
gquantum number.

In Kyser's (1966) experiments, however, the close line
spacing made it 1mpossible to measure the intensity of the
individual lines. Kyser's spectrometer responded to the
input from a wavelength interval significantly larger than
the interval between lines, with the result that his inten-
sity readings "at a given wavelength" included contributions
from several lines. To account for this, he arbitrarily

assumed that the rotational levels of the emitting molecules

are distributed continuously as a function of K1 according
to the Boltzmann formula
_ 2
NK]_ = (const.)(2K1+1)eXp[—(’ﬁ /2Ille)Kl(K1+1)], (6.1-1)

where Kl is a continuous variable. Kyser then obtained his
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predicted intensities at a given wavelength by integrating
the product of the "continuum" intensity and the relative
instrument response over the instrument profile. He found
that the ratio of two of these integrated inftfensities cen-
tered about given wavelengths is still a unique function of
T1 and used this relationship to deduce Tl from his measured

intensity ratios.

6.2 Modification of Kyser's Derivation

6.2.1 Reason for Modifying Kyser's Derivation

Kyser's assumption that the C3I[u rotational levels are
distributed continuously as a function of Kl ignores the
possibility that population alternation may occur in the
C3Hu state. Since the populations of the Xlzg+ rotational

levels alternate in the ratio

c(KO even)/o(KO odd) = 6/3 = 2 (6.2-1)

(see equation (5.3-3)), the populations of the C3

Hu rota-
tional levels also may alternate. As discussed in Section

5.6, the present analysis predicts that
c(Kl even)/cr(Kl odd) = 1.4. (6.2-2)

We have modified Kyser's derivation of the equations for
measured intensity ratio as a function of rotational temper-

ature to take account of the discreteness of the rotational
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lines and of possible population alternation in the C3Hu
state. This derivation is presented below.

6.2.2 Notation

The appropriate formulas are given in Herzberg (1950).
We will use Herzberg's notation throughout the rest of this
section. A schematic energy-level diagram is given in
Figure 6-1. The vibrational gquantum number of the upper
state is denoted by v', that of the lower state by v'". The
corresponding rotational constants are B& and Bs, respec-—
tively, and the rotational quantum numbers are K' and K".
The arrow in the figure shows one of the many possible
transitions of the (0,2) vibrational band, namely, that
corresponding to K'=4, K"=3, According to the selection

3 3

rules for -1 - ~II transitions, only the following transitions

(or branches) are allowed:

P-branch: X' - K" = -1
Q-branch; K' - K" = 0 . (6.2-3)

R-branch: XK' - K"

H

+1
The transition shown in Figure 6-1 belongs to the R-branch.

6.2.3 Wavelengths of the Rotational Lines

Herzberg's formulas are given in terms of wave number

v, which is related to wavelength A by

v =1/A. (6.2-4)
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Figure 6-1: Schematic Energy-Level Diagram
of the Second-Positive Band System of N?
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The wave number of a given line corresponding to the transi-

tion K'— K" is given by the formula

v = vy + B K' (K'+1) - Bl K" (K"+1), (6.2-5)

where Vg is the wave number of the transition K!' = K" = 0.

From the Table 8, page 29, of Dieke and Heath (1959),

we find that for the (0,2) band

1

<
{t

88,941.24 em™t - 62,648,06 cm™t

(6.2-6)
1

]

26,293.18 cm”

The rotational constant BV is given in terms of the mole-

cular constants Be and Oy by the formula

_ 1
B, = By - o (v + 5) . (6.2-7)

From Table 39, page 552, of Herzberg, we obtain

B! = 1.8259 cm™, ol = 0.0197 em™
. (6.2-8)

B" = 1,6380 cm—l, o = 0.0184 em™t

e e
Hence, for the (0,2) band we have

B = 1.8259 em™* -(0.0197 cm_l)(0+%) = 1.8161 cm ™+
B" = 1.6380 em™ b -(0.0184 em™) (243) = 1.5920 em™!
(6.2-9)
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By substituting Equations (6.2-6) and (6.2-9) into Equation

(6.2-5), we obtain

v = 26,293.18 + 1.8161 K' (K'+1)

- 1.5920 K" (K"+1). (em 1) (6.2-10)

Now consider the R-branch, By replacing K" in Equation
(6.2-10) in terms of X' by means of the last of Equations

(6.2-3), we obtain after rearrangement

v = 26,293.18 + 3.6322 K' + 0.2241 K' (K'-1).

(em™ 1) (6.2-11)

Finally, by putting the result into Equation (6.2-4) and
using the binomial theorem, we obtain the following relation
between the wavelength A of a line of the R-branch and the

upper-state rotatiocnal guantum number X':
o
A = 3803.3 - 0.525 K' - 0.0324 K' (K'-1). (A) (6.2-12)

We wish to solve explicitly for K' as a function of A.
Equation (6.2-12) is a quadratic equation for K', with the
solution

k' = -{0.4926 + [0.24265

+ (0.1296)(3803.3—x)]1/2} /0.06U8.
(6.2-13)

Only the minus sign in front of the radical gives a positive
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value. The equations for the P- and Q-branches are similar

to those for the R-branch.

6.2.4 Relative Order of Magnitude of the Line

Intensities of the Three Branches

The intensity I of a line 1is given by the formula

T = (const.) S

Kt Npo/(2K7+1), (6.2-14a)

K'
where SK' is the line strength. For a Boltzmann distribu-

tion of rotational states, this equation becomes

I, = (const.) S, expl[=(82/2T KT K (K'+1) 1. (6.2-14D)

For a 3H - 3H transition, the Honl-London formulas for

the line strengths are

(K'+2) X!

P-branch: SK' = CRTET A
1+ .
Q-branch: Sg, = %§*T%TIT7 ( (6.2-15)
R-branch: SK' = (K'+1)(K'-1) 4
K’

Kyser measured I at the two wavelengths

3785 A

>
|

) (6.2-16)
(0]
3795 A

>
fl

From Equation (6.2-13) and the corresponding equations for
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the other branches, we have computed the values of K' for
these two wavelengths. The results are given (rounded to
the nearest integer) in Table IV. For these large values

of K', the Honl-London formulas (6.2-15) become approxi-

mately
P-branch: SK' = K!
Q-branch: Sgr = 2/K! * (6.2-17)
R-branch: SK' = K'

The intensity of the Q-branch is therefore negligible com-
pared with that of the P- and R-branches. Furthermore, the
exponential factor in Equation (6.2-14b) dominates the fac-
tor SK' at these large values of K', with the result that
the intensity of the P-branch is negligible compared with
that of the R-branch. Hence, only the R-branch contributes

significantly to the emitted intensity. We will therefore

neglect the P- and Q-branches from now on.

6.2.5 Formula for the Intensity Ratio

Using Equation (6.2-12), we have computed the wave-
length of each of the lines of the R-branch. The results
are displayed in Figure 6-2, superposed on a graph of Kyser's
instrument profile plotted as relative response Q versus
wavelength A. With the spectrometer set at 3785 K, all the
lines between K' = 14 and K' = 20 contribute to the measured

o] ¢
intensity I(A=3785"A). At 3795 A, the lines between K'=4
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Table IV: TUpper~State Rotational Quanftum Number

o o
A = 3785 A A = 3795 A
P-branch 31 24
Q-branch 23 15
R-branch 17 10
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o]
and K'=14 contribute to the intensity I(A=3795 A). The

ratio r of these intensities is hence given by the formula

20
o QK') I,
p = L(A=3785 &) _ Kizlu . (6.2-18)
I(A=3795 A) oAy Iy

K1 =l

By substitution from Equation (6.2-14a), we obtain

Q(K') S(K') Np,/(2K'+1)

, - (6.2-19)
2: Q(K'I S(K') NK,/(2K'+1)

The quantity r is what Kyser actually measured in his exper-
iments.

The quantities Q and S are functions only of K'., We
obtain Q from Figure 6-2 and S from Equation (6.2-15). The
values are given in Table V. The ratio r is then a function
only of the populations NK' of the upper-state rotational

levels.

6.3 Numerical Results

To compare with Kyser's result, we have computed r as

a function of upper-state rotational temperature T, for a

1
Boltzmann distribution of CBHu rotational levels. We con-

sidered two extreme cases of population alternation in the

03Hu state:
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Table V: Relatlive Instrument Response and Line Strength

K' Q(K") S(K') Q(K") S(X')
4 0.04 3.750 0.150
5 0.19 4.800 0.912
6 0.35 5.833 2.042
7 0.51 6.857 3.1497
8 0.69 7.875 5.434
9 0.85 8.889 7.556

10 0.99 9.900 9.801

11 0.87 10.909 9.1491

12 0.68 11.917 8.104

13 0.146 12.923 5.945

14 (3795 4)  0.21 13.929 2.925

14 (3785 A)  0.17 13.929 2.368

15 0.46 14,933 6.869

16 0.72 15.938 11.475

17 0.92 16.941 15.586

18 0.86 17.944 15.432

19 0.60 18.947 11.368

20 0.29 19.950 5.786
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Case 1: o(K' even)/c(K' odd) =1
(no population alternation).

Case 2: o(K' even)/o(K' odd) = 2 .

In Figure 6~3, we plot the results as r versus 1/Tl on semi-
log paper. To our surprise, we found that population alter-
nation has an insignificant effect on r, the values of r
with population aglternation differing from those without
alternation only in the third decimal place. This 1s why
only one curve, instead of two curves, appears in Figure 6-3.
If we were to measure the intensity of one line at
each wavelength (rather than the resultant intensity of

several lines), 1ln r versus 1/7, wculd plot exactly as a

1
single straight line. The actual plot is very nearly a
straight line in three distinct reglons. There 1s one line
for 100°K < T, < 200°K (which does not appear on the figure),

a slightly steeper line for 200°K £ T. < 500°K, and a line

1

for 500°K < T. < 1000°K that is slightly steeper yet.

1
Figure 6-3 supersedes Figure 10 of Kyser's (1966) re-
port. Our numerical values differ slightly from "is. For
example, in Kyser's curve, r=0.274 corresponds to T1=3550K;
in our curve, r=0.274 corresponds to T1=3M2OK.
The present numerical results differ from Kyser's not
because population alternation is taken into account or be-

cause some detalls of the present computation are different.

They differ because the basic approaches are different.
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Figure 6-3: Rotational Temperature vs. Measured Intensity Ratio
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Whereas Kyser integrated over an assumed continuous
distribution of intensity versus wavelength, we sum over
the individual spectral lines.

From these results, we come to the following conclu-~
sions:

(1) The quantity r that Kyser measured in his experi-
ments is indeed a single-valued function of the C3Hu rota--
tional temperature Tl‘ Hence 'I‘l can be deduced from a
measurement of r.

(2) Kyser's method is actually a better way of measur-
ing T1 than the usual log-slope method, because the function
r versus T1 does not depend on the population alternation
in the C3Hu state. If one line instead of several were used
at each wavelength, the measured intensity would be directly
proportional to the C3Hu population-alternation factor. This
factor must be obtained from an analysis of the CBHu,# XlZg+
excitation process, e.g., the analysis reported in the pres-
ent report. The use of several lines at each wavelength
makes this factor cancel approximately in the numerator and
denominator of the equation for r, so that an analysis of
the excitation process 1s unnecessary for the deduction of
Tl as a function of r.

We can now substitute our predicted values of NK' as

a. function of K' (discussed in Section 5.6) into Equation

(6.2-19), compute our predicted value of r, and compare it
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with Kyser's measured value. We do this in the next

chapter.
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CHAPTER 7
COMPARISON BETWEEN PREDICTED AND MEASURED

ROTATIONAL TEMPERATURES

7.1 Prediction of the Present Analysis

By substituting our predicted values of NK' as a
function of K' (Section 5.6) into Equation (6.2-19), we

obtain the predicted value of the intensity ratio r as
r = 0.181. (7.1-1)

From Figure 6-3, we see that the corresponding value for

the C3nu rotational temperature is

T, = 266°K. (7.1-2)

This value agrees closely with those obtaineq by using the
usual log-slope method on the basis of our predicted values
of Ny, (Equation 5.6-4). We also obtain the same value of
r when we use the second set of 20,800 pseudorandom numbers
in the Monte-Carlo computations (Section 5.8), thus verify-
ing that we have computed enough collisions to obtain

statistical trends.

7.2 Comparison with Kyser's Measurements

Kyser's measured value for the intensity ratio is

r = 0.274, (7.2-1)
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From Figure 6-3, we see that the corresponding Value of T1
is

T, = 342°K. (7.2-2)
[If Kyser's (1966) curve of r versus Tl is used, r = 0.274
corresponds to Tl = 3550K.] Our prediction disagrees with
Kyser's measurement. We predict a temperature 29OK lower
than the ambient temperature TO = 2950K, whereas Kyser's
‘measured value is 47°K higher.

As pointed out in Section 5.7, our predicted tempera-

ture is equal to T
+

0 times the ratio of the B-values of the
C3Hu and XlZg states. Our theory thus predicts that the
collisions produce essentially no change in the distribu-
tion over the rotational states, whereas Kyser's measure-
ments indicate that the collisions cause conslderable change
in this distribution.

The discrepancy between theory and experiment suggests
that something is in error with our analysis. We have made
a thorough reappraisal of the assumptions of the analysis

in an attempt to discover the source of the discrepancy.

We discuss these matters in the next section.

7.3 Assumptions of the Analysis

We have been able to show by various means (e.g.,
order-of-magnitude calculations) that many of the assump-

tions are valid. The most important remailning assumption
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whose validity we could not verify is that classical
mechanics is adequate for the analysis of the electron-
molecule collisions (Chapter 3). Within the context of the
classical analysis, the most important assumption is that
the maximum possible impact parameter 1is the molecular
radius (Section 5.5). An additional assumption is that, if
two or more integer values of K1 are possible for a given
set of collision parameters, each value is equally probable.,

One cannot estimate quantitatively the error produced
by the use of classical mechanies. One can only antilcipate
that the predictions may be in error. We have, on the other
hand, been able to make quantitative checks of the effect of
modifying the other two assumptions. These checks consisted
simply of redoing the calculations of NKl versus Kl’ and
thence of Tl’ a number of times with one of the assumptions
modified each time.

We examined the effect of the assumption concerning
ID

; Olmax 1
time using the first set of 20,800 pseudorandom numbers to

by repeating the computations of T, twice, each
obtain the collision parameters. In doing this, we modified
the pseudorandom values of DO as described below. The

values of 8> ¢g , and eg for each collision were the same

0 0
as for the basic computations (Section 5.6).
In the first modification, the maximum impact distance

was tripled to obtain
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D0l max = 3 Toe (7.3-1)

and the values of D0 were assumed to be distributed uni-

formly between -SrO and 3r0. We thus tripled each pseudo-

random value of DO’ The resulting predictions are
r = 0.196
(7.3-2)
_ o]
T, = 2797K

The second modification was similar to the first in that

the maximum impact distance was multiplied by six to obtain
Dyl a0 = 6 7y (7.3-3)
The resulting predictilions are

0.216

=
il

(7.3-4)
295°K

H
It

These results show that it would take a huge value of

]D to obtaln Kyser's measured temperature of 3420K.

Olmax

There 1s no evidence, however, as to what value of jDOImax

other than rq is most nearly correct.
This matter was 1nvestigated further by calculating
some trajectories of electrons passing molecules. These

calculations, which are described in Appendix E, lead to

the following conclusions:
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(1) The molecule does not "capture" the electron
if ‘Dol is much larger than rqe

(2) Very little angular momentum is exchanged between
the electron and the molecule during the elec-

tron's flight past the molecule except at the

instant of impact.

These results corroborate the validity of Equation (5.5-12).

We conclude that the assumption concerning |D0|max
cannot account for the disagreement between the predicted

and measured values of Tl'

Our assumption that all integer values of Kl for a
given set of collision parameters are equally probable is
arbitrary. If a different assumption is used, a different
value of Tl might be predicted. A higher temberature will

result, for example, 1if the hlgher integer values of K. are

1
more probable than the lower ones.

We have investigated the magnitude of this effect by
modifying the calculations of Section 5.6, using the same
pseudorandom collision parameters as in Section 5.6. For
each collision in which more than one integer value of K1
is possible, however, we assumed that

Only the highest possible integer value of Kl

occurs. (7.3-5)

113



The resulting predictions are

0.186

H
It

(7.3-6)

s 270°K

1

This is only 49k higher than the temperature in Equation
(7.1-2). This modification causes such a small increase in
Tl because, for most of the colllsions, the only possible

value of K, is K, (e.g., see Table III).

7.4 The Use of Classical Mechanics

Within the context of classical mechanics, subsidiary
assumptions either are demonstrably valid or do not affect
the predicted value of Tl very much. We therefore conclude
that the use of classical mechanics must be the cause of the
disagreement between theory and experiment. Unfortunately,
the current state of knowledge in collision theory precludes
a full quantum-mechanical analysis.

In the work mentioned earlier, Muntz (1962) analyzed
electron-impact excitation by applying the standard formulas
for absorption of 1light by molecules. This is valid in his
situation because the high-energy (50,000 eV) electrons in
Muntz's beam act like photons when they strike a molecule.

Such an analysis is not valld, however, for the low-energy

(18 eV) electrons in Kyser's spark. In spite of this, we
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did perform a calculation of the excitation using Muntz's
model, to obtain at least some quantum-mechanical results.

Interestingly, this model predicts the following values:

r 0.181

, (7.4-1)
= 266°K

H
|

which agree with the c¢lassical-mechanics Monte-Carlo pre-
diction. The details of the calculation are given in

Appendix F.
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CHAPTER 8

CONCLUDING REMARKS

In view of the discrepancy between the present analysis
and Kyser's (1966) experiments (Section 7.2), the tracer-
spark technique cannot yet be considered a reliable means
for deducing static temperature in nitrogen. Measurements
of the deduced rotational temperature at combinations of
ambient temperature, ambient pressure, and spark energy
other than those tested by Kyser (Section 1.2) would be
desirable. Even if these measurements continued to disagree
with the present analysis, they would provide an empirical
relation between the ambient temperature and the deduced
temperature.

The present analysis is, in any event, the first of its
kind and gives new understanding of the excitation of the
nitrogen second-positive band system. Of the several facets
of the analysis discussed in Chapters 2 through 6, only the
dynamics of the individual collisions (Chapter 3) 1is of
questionable validity (because we have tried to apply
classical mechanics to an electron-molecule collision).

The other facets of the analysis may be useful to future
investigators of the excitation of band systems by a dis-

charge. Many of these ideas are applicable to band systems
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other than the second-positive, as well as to other gases.
They may also be applicable to excitation phenoména in

related devices, such as lasers (Gerry 1965). It is also
hoped that our critical examination of the assumptions in
the analysis will expedite the work of future analysts in

this kind of problem.

117



APPENDIX A

Derivation of the Angular-Momentum Equation

In this appendix, we derive Equation (3.3-1c).

We use the notation shown in the following sketch:

The vector 6 is the distance between the origin O of an
inertial coordinate system and the center of mass CM of the
system (electron plus molecule), ; is the distance between
CM and the electron, and E 1s the distance between CM and

the molecular center of mass. The angular-momentum equation

is
> > > = - _
(Catrg) x mvy + (Cp +Rp) xMX70+ 1'{0—
> > - > > -> >
(Cqtry) X mvq + (C1 +Rq) X MVl + K.l,
or equivalently,

> > > > -

Co X (mvg+MVg) + mrgx vy + MRy x ¥+ X, =
-> -5 -5 .

Cp X (mvy+MVq) + m;i X 31 + Mﬁl X Vl + Kl'

(A-1)
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From the linear-momentum equation (3.4-3b), it follows that

g = Wy, (A-2)

-5
where W is the center-of-mass velocity, given by

> my + MV
W = m+M (A—3)

=
(The constancy of W results because there are no external

> >
forces acting on the system.) Hence C; 1is related to Cy by
> > -
C1 = Co + Wt, (A-4)

where t is the time interval between the ( )O situation
and the ( )l situation.

- -> >
Since W 1s parallel to mv+MV, we have

> > >
W X (mv+MV) = O, (A-5)

so that we obtain

> > > > > e
Cp x (mv MV ) = Cy X (mv+MV,). (A-6)

(The constacy of the portion of the angular momentum that
is due to the center-of-mass motion results bécause there
are no external torques acting on the system,)

Hence Equation (A-1) reduces to

-> ->
mr. X v

> > > >
0 0 + MﬁOXV + K, = mrl>< Vl + Mﬁl X Vi + Kl

0 0
(A-T)
By definition of the center of mass, we have
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mp = -MR, (A-8)

and substitution of this into Equation (A-7) gives

>

> > > >
mby X (V,-V,) + Ky = mPy X (V-V) + K. (a-9)
The distance 5 between the electron and the molecule is
> > >
D=pr - R. (A-10)

By substituting Equation (A-8) into this relation, we
obtain

mr = WD, (A-11)
where U i1s the reduced mass defined by

- _mM | _
[ v (A-12)

Putting Equation (A-11) into Equation (A-9), we obtain

finally

> > > > > > > >
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APPENDIX B

Verification that the Electron Velocity Distribution

Function is Maxwellian

In this appendix, we verify the validity of Equation
(4.3-1ka).

Xruger and Mitchner (1967) show that, if electron-
electron collisions are dominant, the electron veloclty
distribution function is a Maxwellian at the electron
temperature. This will be true if the following 1lnsqguality

is satisfied:

v >> v
e

ee m/M,

M (B~1)
where Vee ie the electron-electron collision frequency and
veM 1s the electron-molecule collision frequency.

We now compute the orders of magnitude of Vee and Vem
for typical spark conditions. If we assume that an

electron-molecule ccllision occurs only when the electron

and molecule touch each other, then we have

2
Ve = Ny Vo T Ty s (B-2)

e

where Ny 1s the molecular number density, Ve is the mean
electron speed, ry (= 0.547 x 10_8 cm) is the molecular
radius, and VeM includes both elastic and inelastic
collisions. Similarly, an electron-electron collision

occurs when one electron passes within the other electron's

Debye sphere, so that we have
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\)ee ::Ne Ve 1T. A H (B—3)

where A is the Debye length. From these equations, we

obtaln

Yee M Ne 22 (B-4)

VeM m/M om NM rg

From Spitzer (1962), page 22, we find
- 1/2
A= 6.90 (Tg / N,) s (B-5)

where A is in cm, Te is the electron temperature in OK,
and Ne is the electron density in cm_3. The wvalues of Voo
Ne’ and NM are given in Section 2.2. From them we compute

for the electron temperature

T, = o(10" °k). (B-6)

The numerical value of the Debye length is

A= 0(10““ cm) . (B=-7)

The ratio in Equation (B-4) is thus found to have the

numerical value

v
ee

so that the criterion expressed by inequality (B-1) is

= 0(10%), (B-8)

satisfied. The number 107 is so large that any errors due

to the crudeness of the calculation should not change this

conclusion.
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APPENDIX C

Results of Evaluating the Integral

In this appendix, we 1list the integrals used in the

evaluation of G(go) in Section 5.4.2.

!
]

0 {[ﬂ exp(—LZ) -u exp(-[ﬁ)] + Al]./ga, (c-1)

H
It

1 [exp(—L2) (L2+1) - eXp(—U2)(U2+l)]/2a2, (C=2)

I, = -[ u eXp(—Ug) (U2+1) - 4 exp(—Lz) (L2+l)

- al. - A l/2a2 (C-3)

0o " & >

I, = - [exp(-0%) (0t + 21f + 2)

- exp(-L?) (@' + 212 + 2)]/2a3, (=)
I, = [ﬂexp(—L2) @t + 2r? 4 2)

- u exp(—Uz) (‘Ul‘l + 2U2 + 2) + a2 12 + 2a IO

+ 2Al]/2a3, (C-5)
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T, = [exp(-22)(1® + 3u* + 612 + 6)
- exp(—Uz)(U6 + 3Uu + 6U2 + 6)] /2au, (Cc-6)
where
L = al/? f, (c-7)
U = al/gu, and (Cc-8)
A, = %—(w/a)l/2 [erf(U) - erf(L)]. (C=-9)

124



APPENDIX D

Generation of Pseudorandom Numbers.

In this appendix, we describe the method by which the
pseudorandom numbers used in the Monte-Carlo calculations
of Chapter 5 were generated.

The random numbers were generated with a digital-
computer program. This program generates what are called
"pseudorandom" numbers. The same sequence of numbers is
generated each time the program is run, but the numbers
satisfy statistical tests for randomness. The program used
was a mixed congruential method, as programmed by the Stan-
ford Computation Center. The n'th number R, (n=0,1,2,...)
is given by

27

R, = [(23) Rp-1 + 211,527,139 1(mod 2°7), (D-1)

where

RO = 0. (D-2)

This formula generates a sequence of pseudorandom numbers

that are uniformly distributed in the interval
0 <R < 1. (D-3)
= "n

The period of the sequence is 227 (= 135,000,000). One does
not have to take the entire sequence of 135,000,000 numbers,
however, to obtain a random set. The members of any suffi-
ciently large subset - e.g., Ry, Ro, R3, ... 3 R

100 °F B>
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R8’ ng, cee s RMOO - also are distributed uniformly in
[0,1).

The first 100 numbers in the sequence are listed in
Table D-1. Their mean is 0.48, so that the numbers are
distributed evenly about 0.5, as random numbers between 0
and 1 should be. We illustrate the randomness of the
numbers by plotting them in pairs as 50 points on a grid in

Filgure D-1. Point 1 uses Rl as absicissa and R, as ordinate,

2
point 2 uses R3 as abslcissa and Ry as ordinate, etc.

The points fi1ll the grid fairly well. If we use these

points to compute the quantity

1
I =f x dx (D-4)

using equation (5.2-3), we obtain
I % (23/50) (1) (1) = 0.46, (D-5)

as compared with the exact wvalue of 0.50.

For the computations of Ni{ versus K]? we use the
1
numbers R, in groups of 4, rather than in pairs.
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Table D-1:

The numbers are rounded to 2 decimal places,

The First 100 Pseudorandom Numbers

127

n n n Rn n Rn n Ry n R, n R,
1 .58 119 .998 37 .11 55 .92 73 .66 91 .86
2 .50 |20 .43 38 .86 56 .52 Th LTh 92 .09
3 .89 121 .53 39 .56 |57 .32 |75 .95 193 .10
y .99 22 .52 ho .77 58 .11 76 .66 9L .46
5 .72 {23 .32 b1 .52 58 .27 77 .37 95 .80
6 .88 )24 .82 42 .14 (60 .90 | 78 .12 |96 .74
7 .91125 .91 43 .81 61 .50 79 .81 97 .35
8 .51 )26 .84 by .92 62 .77 80 .15 98 .18
9 .951{27 .53 45 .09 {63 .35 | 81 27 199 .82

10 .88 1|28 .76 e .51 64 .62 82 .50 {1060 .25

11 .46 129 .07 b7 .06 (65 .06 | 83 .09

12 .34 130 .62 48 .25 (66 .97 | 84 .21

13 .61 |31 .09 hg .48 67 .63 85 .06

14 .541 32 .52 50 .35 68 .23 86 .30

15 .16 | 33 .03 51 .14 69 .53 87 .78

16 .34} 34 .07 52 .24 70 .78 88 .02

17 .04 {35 .35 53 .37 71 .21 | 89 .64

18 .20t 36 .06 54 .15 72 .61 90 .70



Figure D-1: The First 100 Pseudorandom Numbers,

Taken in Pairs
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APPENDIX E

Trajectory Calculations

E.1 Introduction

In this appendix, we calculate the following quantities:

(1) Trajectories followed by electrons during their
encounters with the molecular interaction potential.

(2) The angular momentum transferred between the
electron and molecule during these encounters.

The purpose of these calculations, as we mentioned in
Section 7.4, is to investigate the validity of the assump-

tion that the maximum impact distance is the molecular radius.

As in our Monte-Carlo calculations, go, DO {or bO)’

¢

, and 9o are parameters.
g0 &0
E.2 Units

We use atomic units in these computations. The units
of the basic quantities are as follows:
-8
Length: Bohr radius = 0.529167 X 10 cm. (E.2-1a)

-24
Mass: Proton mass = 1.67252 X 10 gm. (E.2-1b)

Energy: Twice the energy of the first Bohr orbit =

27.2 eV. (E.2-1c)
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The unit of velocity is therefore
=24
Velocity = (energy/mass) 1/2= (27.2 eV/1.67252 X 10

'gm)1/2 = 5,09401 X 106 cm/sec. (E.2-2)

E.3 Dynamics of a Particle in a Noncentral Force Field

E.3.1 Eguivalence to the Actual Collision.

Any binary collision can be recast as an encounter
between a ficticious particle and a ficticious point poten-
tial. The ficticious particle's mass and velocity are the
reduced mass of and the relative velocity between the colli-
sion partners, respectively. The ficticlous potential is
the interaction potential between the collision partners,
and the distance between the ficticious particle and the
fictielous potential 1s the distance between the collision
partners.

For the electron-molecule collision that we are analyz-
ing, the reduced mass 1is nearly equal to the electron mass.
Hence, the trajectory of the ficticious particle is nearly

the same as the trajectory of the electron.
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E.3.2 Orbit Egquation

The coordinate system for the collision is shown in

Figure E-1.

molecule

electron

r

Figure E-1: Coordinate System

The location of the particle is specified by polar coordi-
nates r and 0 relative to the origin, where a noncentral
potential ¢ is located. The r and 8 components of the
relative velocity are Er and Ee, respectively.

The differential equation describing the orbit of a
particle in a noncentral force field has been derived by

Prager and Rasmussen (1967) and is

2
5 P2 LZ
L (geg)+ 2 T3 2
9_ U r u sin~#8 + 2r git = (E 3"1)
a8 2 woee - T .
8
—= + 1
r

where nis the reduced mass, rg = dr/de, LZ is the x compo-

nent of the angular momentum about the origin, and
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E = l21' Ei (1+I‘2912n) + T——Z——— + ¢ (E.3-2)

is the energy of the electron-molecule system.
Far from the origin, the relative speed 1s &;; hence, by

conservation of energy, we have

1 2
E=35H g, = constant. (E.3-3)

We note that, since ¢ is a function of r(8) and 8, d¢/de is

given by the formula

d

99 3¢ _
sz T 39 © To

QJ’OJ
Do

3¢ , 39 (E.3-4)
or 38 -

oI5

For the interaction between an electron and a diatomic

molecule, we can write

¢ = d(r,0) . (E.3-5)
Therefore, the trajectory is planar, so that
L,=0. (E.3-6)

Using Equation (E.3-6) to simplify (E.3-1) and carrying out
the differentiation, we obtain the following second-order

ordinary differential equation for the trajectory r(9):

2
ar a9 _ 2 20)[(ar)? , L2
93_1:=§_(9_r_)2+r+(d95% r ar)[(’dB) -“”],(E.3—7>

212 (E=¢)
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For a central potential, we have 9¢/36 = 0. 1In this
case, Equation (E.3~7) reduces to the equation given in
Section 3-5 of Goldstein (1950). This is a check on Equa-

tion (E.3-7).

E.3.3 Initial Conditilons

To integrate Equation (E.3-7), we must know r(eo) and

*
I'e(eo) at some angle 9,.% physically, we must have

r(e) >
as 6 » 90° . (E.3-8)
re(e) > —00

The impact parameter bO is given by

by = éigoo [r(8) cos 8] . (E.3-9)

E.3.4 Angular Momentum

The angular momentum L of the relative motion 1s given
by

L =umr Ee . (E.3—10)

The initial angular momentum L 1s given by

LO = U bO gqg o (E.3-11)

We express L in terms of the orbit variables r and re by

means of the formulas

Eg = T £./Ty s (E.3-12a)

¥The notation r,(8,) means (dr/d®),_, -
"0 0 90
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2(e-9) |M?
Er, P e (E.3-12b)
re + r

Since the interaction potential is noncentral, the
electron can exert a torque on the molecule and thus change
its angular momentum. By conservation of angular momentum,
the change in angular momentum of the molecule (i.e., the
rotational excitation or de-excitation) 1s equal and

opposite to the change in angular momentum of the electron.

E.4 Potential Used

If the potential ¢(r,8) is known, Equation (E.3-7) can
be solved for r(8), at least numerically. As we pointed out
in Section 3.4, however, the potential is known only for
large valueé of r. From Takayanagi and Geltman (1965), the

asympototic potential is, in atomic units,

¢(r,0) = - & - o, 9 (3 cos 20 + l),(E.M-l)
r-> 2ru (2PH 3\ I

where o and o' are related to the polarizability of the mole-

cule and Q is the electric-quadrupole moment of the mole-

cule. For N2, we have

o= 12,00 , (E.l4-23)
a' = h.20 , (E.L-2Db)
Q= -1.10 . (E.4-2¢)
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For lack of anything better, we applied the asymptotic
potential at small, as well as large, values of r. The
strohgly attractive r’u terms, however, pull the particle
into the origin for small r. To prevent this, we assumed
that the potential can be represented by an impenetrable

sphere with a radius equal to the molecular radius

(0.547 x 10"8 cm). This is nearly equal to 1 atomic unit

8

of length (0.529167 X 10"~ em). Thus, the potential used

in the computations was

i

¢(r,0) = - EQE —(2a‘ + @§>(% cos 28 + %), r>1,
O r r
(E.4-3a)

$(r,0)

i
.
8
e}
IA
ot

(E.4-3b)

Since the computations are based on a potential of question-
able validity and are not quantum-mechanical, the results

should be valid only for showing trends.

E.5 Integration of the Orbit Equation

E,5.1 Numerical Method

The complicated potential (E.4-3) makes the orbit equa-
tion (E.3-7) nonlinear and complicated, and precludes
obtaining a closed-form solution for r(6). Instead, we

obtained numerical solutions by means of the Kutta-Merson
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method (Fox 1962), as programmed by the Stanford Computa-
tion Center. To apply this method, we first wrote Equation
(E.3-7) as two simultaneous, first-order, ordinary differ-

ential equations as follows:

%% =1y (E.5-1a)

dre 2re (re %% - r2 %% rg + r2)

'——d—e—= —_—+ r + 5 * (E-5_lb)
2r” (E-¢)

The simultaneous numerical solution of these equations

yields r(8) and rg(®).

E.5.2 Approximate Initial Conditions

The initial conditions, which are imposed at infinity
(Section E.3.3), must be approximated by finite values of r
and re for the numerical solution. For a given impact para-

meter bO’ we used the approximate initial conditions shown

in Figure E-2, namely,

r(89.5%) = |og| / cos 89.5° (E.5~22)

|b0| / 0.0087265354984,

r,(89.5%)= —|b0{ sec 89.5° tan 89.5°

-r(89.5°) tan 89.5°

]

-r(89.5°) (114.58865013). (E.5-2b)
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E.5.3 Angular-Momentum Transfer

From the equations in Section E.3.l4, we have computed
the variation of L along the trajectory. The final angular
momentum Ll was found by carrying the computation far
enough that the particle had passed the origin and L was
approaching an asymptotic walue. The final molecular angu-

lar momentum lﬁl'was then obtained from the formula

=
=
fl

€| - (t1 - 1p) sien(dy), (E.5-3)

ALK (K #1172 (E.5-4)

-
o]
The sign (bo) factor enters because, relative to the sign

of LO,
sign (ﬁo) = sign (by). (E.5=5)

The final rotational quantum number K; was computed by
means of Equation (3.5-6).

E.5.4 Verification of the Correctness of the Method

The equations and the digital-computer program were
verified by computing the trajectory for the Coulomb poten-
tial

¢ = -K/r. (E.5-6)
For this potential, a closed-form solution for the orbit

exists (Goldstein 1950, page T77). Computations were
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performed for the four cases K = 1, 10, 100, 1000. We
checked that our numerical solution agrees with the closed-
form solution. We also checked that L = L, throughout the

0]
orbit, as is the case for any central potential ¢(r).

In addition to the foregoing, we computed trajectories

for the potential

q) = _K/rq’ (E-S_Y)

with K = 1, 10, 100, 1000, and checked that L remained
constant throughout each orbit. To prevent the particle
from being attracted into the origin by the potential of

Equation (E.5-8), we used for some cases the cutoff poten-

tial
b = -K/v, T > 7. (E.5-8a)
it
¢ = -K/r, , r £ r,. (E.5-8b)

E.5.5 Treatment of the Conditions at the Hard Sphere

For a given set of collision parameters, the orbit
equations (E.5-1) were integrated in the direction of in-
creasing 8, starting from the initial conditions (E.5-2).
For the collisions in which the radius became unity at some
angle GI’ we had to account for the impenetrability of the
sphere at r=1.

The boundary conditions at the hard sphere for the
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incoming particle can be expressed as

(r, T 8).. = (1, (r 9 (E.5-9)

8% “7in e)I’ I)’

where
(re)I < 0. (E.5-10)
Computations were performed on the basis of two dif-
ferent initial conditions for the outgoing particle as
follows:

(1) Elastic, specular reflection:

(l", I'e, e)out = (l, —(]?e)'I, eI>. (E.S—ll)

In this case, the energy E of the outgoing particle is the
same as that of the incoming particle.

(2) 1Inelastic impact:

(r, v, , 0) = (1, (ry)ps 180°). (E.5-12)

6° out

In this case, the energy of the outgoing particle is taken
to be lower than that of the incoming particle by the amount
of the excitation energy of the CBHu +'X12g+ transition.
This case corresponds to our analysis described in Chapter
3; the angle 8 = 180° for the outgoing particle means that
the magnitude of the impact parameter b, has its maximum
value, namely, rg. The effect of varying the initial slope
(rg)p is discussed in Section E.6.2.

On the basis of one of the two sets of initial condi-

tions at the hard sphere, the integration was continued in
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the direction of increasing 6. The integration was ended

when the particle was far from the origin and L was approach-

ing an asymptotic value.
E.6 Results

E.6.1 Elastic Reflection from the Hard Sphere

Trajectories were calculated for the following sets of

collision parameters:

8

gy = 3 X 10" cm/sec
(1) « (E.6-1)
Ibo' ranging from 1 X 1079 em to
20 x 1077 em
. 8
8y ranging from 2.2 X 10~ cm/sec
(2) to 3 X 108 cm/sec « (E.6-2)
_ -9
lbol = 10 cm
For all collisions, we set
) = 0 =n/2, (E.6-3)

g0 g0
so that the initial relative velocity éb is in the initial

plane of rotation of the molecule and 1is perpendicular to
the internuclear axis.

(The angles ¢g and eg refer to the notation of Chapter 3
0 0

and should not be confused with the ¢ and 8 of this chapter.)

Since ¢ = 0
€0 €0

both +bO and —bo. The sign of bO appears only in Equation

= m/2, a single trajectory is valid for

(E.5-3). These trajectories are valid for any value of Kg;
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the value of K, enters only in the computation of ¥
(Equation E.5-3).

In Figure E-3, we show trajectories for various values
of |by|, with gy fixed. For lb0| = 1.0 X 1077 cm, the
trajectories for 8j ranging from 2.2 X 10  cm/se¢ to 3.0 X
108 cm/sec are nearly coincident with each other. The poten-
tial does not "capture" the particle (i.e., the radius
remains greater than unity) for lbolz;IE.O X 10_9 cm, which
is 2.2 times the molecular radius.

In each of the computed collisions, very 1little rota-
tional excitatlon occurs. In no collision does |K1—KO'
exceed 0.2, which occurs for the case KO=1O. Furthermore,

9

IKl—KOI is less than 0.001 for |bO] > 14.0 X 1077 cm, and

decreases as ‘bol increases beyond this value.

E.6.2 Inelastic Impact at the Hard Sphere.

We discuss only the outgoing part of the trajectory
here, because the incoming part is the same as with elastic
reflection at the hard sphere. In Figure E-4, we show
the effect of varying (rg)p on the outgoing part of the

trajectory for the collision parameters

gy = 3.0 X 108 cm/sec

5.4 x 1077 em . (E.6-1)

) = 8 = 7/2
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Figure E-3: Trajectories with Elastic

Reflection at the Hard Sphere
8y = 3.0 x 108 cm/sec

6 =6 = u/2
Z0 23
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Figure E-4: Trajectories with Inelastic Impact
at the Hard Sphere

3.0 x 108 cm/sec

gO =
ool = 5.4 x 10" %cm
= = 7/2
¢)go €0
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In Figure E-5, we plot K, versus (r for the subcase

G)D

by = 5.4 x 1077 cm
) (E.6~5)
KO = 10
We see that Kl is a rather strong function of (re)D. As in

Section 3.5.2, we note that only certain values of (re)D

yleld integer wvalues of K15 these integer values agree
reasonably well with the values for the corresponding cases
listed in Table I. In all the results shown in Figures E-4
and E-5, we have considered only the case in which the de-
parting particle travels in the same plane as the incoming
particle (i.e., in the notation of Chapter 3, ¢g1 = ¢go).
Our trajectory computations show that the angular
momentum L changes very little during the outgoing part of

the trajectory. Almost all the change in L takes place at

the instant of impact with the hard sphere.

E.7 Conclusions

Our trajectory computations indicate that

(1) The molecule does not "capture" the electron if
{bol is larger than about 2 r.

(2) Almost all the angular-momentum transfer occurs
when the particle impacts the hard sphere.

(3) The rotational excitation can be calculated by
applying the conservation laws immediately before and after

the impact at the hard sphere, along with the guantum
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condition to fix the initial direction of the outgoing
particle. The trajectory calculations thus reduce, for

the purpose of computing X to the analysis described in

19
Chapter 3.
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APPENDIX F

Excitation by Photon Absorption

F.1 Analysis

In this appendix, we perform the calculation (referred
to in Section 7.4) of the excitation using Muntz's (1962)
model.

As in Chapter 6, we use Herzberg's (1950) notation.

Let ( )''' denote values in the X12g+ state and ( )' denote
3

values in the C Hu state.

According to the selection rules for 3H+12 transitions,

only the following branches are allowed:

P-branch: K'-K'"''" = ]
Q~branch: K'-K''' = . (Fr.1-1)
R-branch: K'=-K''"! = 4]

3

Hence the number NK’ of C’Hu molecules that have rotational
quantum number K' and a given vibrational quantum number v'
is given by the relation
Npy = (number of molecules in the K''' = K'-1
level of xlzg+ that are excited to the v'
level of C3Hu with an upward rotational

transition of +1) + (similar terms for

K'''=K'+1 and K'''=K'). (F.1-2)
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By use of Equation (III, 173), page 127, of Herzberg (1950),

we put Equation (F.1-2) into mathematical form as follows:

NK' = (const.) {[SE,,,NK,,,/(2K"1+1)] +

Krrr=Kto]

[SRr v iy, /(2K 114+1)] +

Kt'r=K?
[SP N— /(2K"l+l\:|

Krraotige ) Kt'1=K'+] s
(F.1-3)

P SQ <R

where SK"" Krirs Ogrrg are the l1ine strengths. We have

[V SR 9}

R

(SK"')K"'=K'-—1 = (COnSt ) (K'-l-l)

(_S}?vvi)Klyv=ug = (COI’ISt ) (EK"!‘I) (F l_ll)
P

(SK”')K”‘=K'+1 = {(const.) K!
For a Boltzmann distribution, we have

Ngrvo = (const.) o(K''') (2K'''+1) X

exp[-C'"'K' "1 (K'"'+1)], (F.1-5)

where
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6, K''' even
o(K''') = (F.1-6)

3, K''' odd

and

Crivo= Bl T iRy, (F.1-7)

By substitution of Equations (F.1-4) through (F.1-6) into

Equation (F.1-3), we obtain an equation for Ngr as folliows:

NK' = (const.) {(“'+l)exp£-C"'(K'-l)K']
+ 2(2K'"+1)exp[-C'" ' 'K'(K'+1)]
- K'exp[—C’"(K'+l)(K'+2)]}, K' even,
(F.1-83a)
NK' = (const.){ 2(K'+1)exp[-C'" " (K'-1)K']

+ (2K'"+1)exp[-C'"'"'K'(K'+1)]
+ 2K'exp[—C"'(K'+l)(K'+2)]} , K' odd.

(F.1-8Db)

This equation agrees with the one derived by Muntz (1962)

when the same case 1s considered.

7.2 Numerical Results

The important parameter that affects N,., is the ground-
state temperature T''' (Equation F.1-7). By means of Equa-

tions (F.1-8), we have computed N for T"'=2950K, which

Kl
is the temperature used in Kyser's (1966) experiments. The
results are plotted in Figure F-1. We see Lhat

(1) The values of in[NK,/(zK’+1)] versus K'(K'+1)
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fall on a straight line.

(2) There is no population alternation in the .C3IIu
state.
By substituting the computed values of NK’ into Equa~

ticn (6.2-19), we find the intensity ratio r to be

r = 0.181. (F.2-1)
From Figure (6-3), we see that the corresponding ¢31 rota-
tional temperature is

T' = 266°K. (F.2-2)

This temperature agrees with that predicted by the classical-

mechanics Monte-Carlo analysis.
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